Problem 26

Consider the initial value problem

\[y'' + 2ay' + (a^2 + 1)y = 0, \quad y(0) = 1, \quad y'(0) = 0. \]

(a) Find the solution \(y(t) \) of this problem.

(b) For \(a = 1 \) find the smallest \(T \) such that \(|y(t)| < 0.1 \) for \(t > T \).

(c) Repeat part (b) for \(a = 1/4, 1/2, \) and \(2 \).

(d) Using the results of parts (b) and (c), plot \(T \) versus \(a \) and describe the relation between \(T \) and \(a \).

Solution

Since this is a linear homogeneous constant-coefficient ODE, the solution is of the form

\[y(t) = e^{rt}. \]

Substitute these expressions into the ODE.

\[r^2 e^{rt} + 2a(re^{rt}) + (a^2 + 1)(e^{rt}) = 0 \]

Divide both sides by \(e^{rt} \).

\[r^2 + 2ar + (a^2 + 1) = 0 \]

\[r = \frac{-2a \pm \sqrt{4a^2 - 4(1)(a^2 + 1)}}{2} = \frac{-2a \pm \sqrt{-4}}{2} = \frac{-2a \pm 2i}{2} = -a \pm i \]

Two solutions to the ODE are \(y = e^{(-a-i)t} \) and \(y = e^{(-a+i)t} \), so the general solution is a linear combination of the two.

\[y(t) = C_1 e^{(-a-i)t} + C_2 e^{(-a+i)t} \]

Using \(C_3 \) for \(C_1 + C_2 \) and \(C_4 \) for \(-iC_1 + iC_2\), the real general solution is

\[y(t) = C_3 e^{-at} \cos t + C_4 e^{-at} \sin t. \]

Take a derivative of it.

\[y'(t) = -C_3ae^{-at} \cos t - C_3e^{-at} \sin t - C_4ae^{-at} \sin t + C_4e^{-at} \cos t \]

www.stemjock.com
Apply the initial conditions now to determine \(C_3 \) and \(C_4 \).

\[
\begin{align*}
y(0) &= C_3 = 1 \\
y'(0) &= -C_3a + C_4 = 0
\end{align*}
\]

Solving this system of equations yields \(C_3 = 1 \) and \(C_4 = a \). Therefore,

\[
y(t) = e^{-at} \cos t + ae^{-at} \sin t.
\]

Based on the graph for \(a = 1/4 \), the smallest \(T \) such that \(|y(t)| < 0.1 \) for \(t > T \) is about 7.43.

Based on the graph for \(a = 1/2 \), the smallest \(T \) such that \(|y(t)| < 0.1 \) for \(t > T \) is about 4.30.
Based on the graph for \(a = 1 \), the smallest \(T \) such that \(|y(t)| < 0.1\) for \(t > T \) is about 1.88.

\[
y(t) = e^{-t} \cos t + e^{-t} \sin t
\]

Based on the graph for \(a = 2 \), the smallest \(T \) such that \(|y(t)| < 0.1\) for \(t > T \) is about 1.51.

\[
y(t) = e^{-2t} \cos t + 2 e^{-2t} \sin t
\]
Plotting the points, \((0.25, 7.43)\), \((0.5, 4.30)\), \((1, 1.88)\), and \((2, 1.51)\), we obtain the following graph.

\begin{center}
\begin{tikzpicture}
\begin{axis}[
 xlabel={a},
 ylabel={T},
 xmin=0, xmax=2.5,
 ymin=0, ymax=7,
 xtick={0,0.5,1,1.5,2},
 ytick={1,2,3,4,5,6,7},
 grid=both
]
\addplot[only marks] coordinates {
 (0.25, 7.43)
 (0.5, 4.30)
 (1, 1.88)
 (2, 1.51)
};
\end{axis}
\end{tikzpicture}
\end{center}

It seems that \(T\) and \(a\) are inversely related.