Problem 24

In each of Problems 23 through 30, use the method of reduction of order to find a second solution of the given differential equation.

\[t^2y'' + 2ty' - 2y = 0, \quad t > 0; \quad y_1(t) = t \]

Solution

Because this ODE is homogeneous, any constant multiple of \(y_1(t) \) is also a solution: \(cy_1(t) = ct \). According to the method of reduction of order, the general solution is obtained by allowing \(c \) to vary as a function of \(t \).

\[y(t) = c(t)t \]

Substitute this formula for \(y(t) \) into the ODE.

\[t^2[c(t)t]' + 2t[c(t)t]' - 2[c(t)t] = 0 \]

Evaluate the derivatives using the product rule.

\[t^2[c'(t)t + c(t)]' + 2t[c'(t)t + c(t)] - 2[c(t)t] = 0 \]

\[t^3c''(t) + 2t^2c'(t) + 2tc(t) - 2tc(t) = 0 \]

Divide both sides by \(t^3 \).

\[c''(t) + \frac{4}{t}c'(t) = 0 \]

This is a linear first-order ODE for \(c'(t) \), so it can be solved by multiplying both sides by an integrating factor \(I \).

\[I = \exp \left(\int \frac{4}{s} \, ds \right) = e^{4\ln t} = e^{\ln t^4} = t^4 \]

Proceed with the multiplication.

\[t^4c''(t) + 4t^3c'(t) = 0 \]

The left side can be written as \(d/dt[Ic'(t)] \) by the product rule.

\[\frac{d}{dt}[t^4c'(t)] = 0 \]

Integrate both sides with respect to \(t \).

\[t^4c'(t) = C_1 \]

Divide both sides by \(t^4 \).

\[c'(t) = \frac{C_1}{t^4} \]

www.stemjock.com
Integrate both sides with respect to t once more.

$$c(t) = -\frac{C_1}{3t^3} + C_2$$

Therefore, using a new constant C_3 for $-C_1/3$, the general solution is

$$y(t) = \frac{C_3}{t^2} + C_2t;$$

the second solution is $y_2(t) = 1/t^2$.