Problem 8

In each of Problems 1 through 14, find the general solution of the given differential equation.

\[y'' + 2y' + y = 2e^{-t} \]

Solution

Because this ODE is linear, the general solution can be expressed as a sum of the complementary solution \(y_c(t) \) and the particular solution \(y_p(t) \).

\[y(t) = y_c(t) + y_p(t) \]

The complementary solution satisfies the associated homogeneous equation.

\[y'' + 2y' + y = 0 \quad (1) \]

This is a homogeneous ODE with constant coefficients, so the solution is of the form \(y_c = e^{rt} \).

\[y_c = e^{rt} \quad \rightarrow \quad y'_c = re^{rt} \quad \rightarrow \quad y''_c = r^2 e^{rt} \]

Substitute these expressions into the ODE.

\[r^2 e^{rt} + 2(re^{rt}) + e^{rt} = 0 \]

Divide both sides by \(e^{rt} \).

\[r^2 + 2r + 1 = 0 \]

\[(r + 1)^2 = 0 \]

\[r = \{-1\} \]

One solution to equation (1) is then \(y_c = e^{-t} \). Use the method of reduction of order to find the general solution: Plug in \(c(t)e^{-t} \) into equation (1) to obtain an ODE for \(c(t) \).

\[

c''(t)e^{-t} - c'(t)e^{-t} - c'(t)e^{-t} + c(t)e^{-t} + 2c'(t)e^{-t} - 2c(t)e^{-t} + c(t)e^{-t} + c(t)e^{-t} = 0
\]

\[c''(t)e^{-t} = 0 \]

Multiply both sides by \(e^t \).

\[c''(t) = 0 \]

Integrate both sides with respect to \(t \).

\[c'(t) = C_1 \]

Integrate both sides with respect to \(t \) once more.

\[c(t) = C_1 t + C_2 \]

www.stemjock.com
The complementary solution is then

\[y_c(t) = C_1 te^{-t} + C_2 e^{-t}. \]

On the other hand, the particular solution satisfies

\[y_p'' + 2y_p' + y_p = 2e^{-t}. \]

We would use the trial solution, \(Ae^{-t} \), but because \(e^{-t} \) is already a solution of equation (1), we will use \(Ae^{-t} \). Actually, since \(te^{-t} \) also satisfies equation (1), we will use \(y_p(t) = At^2 e^{-t} \).

Substitute this into the ODE to determine \(A \) and \(B \).

\[
(At^2 e^{-t})'' + 2(At^2 e^{-t})' + At^2 e^{-t} = 2e^{-t} \\
(2Ate^{-t} - At^2 e^{-t})' + 2(2Ate^{-t} - At^2 e^{-t}) + At^2 e^{-t} = 2e^{-t} \\
(2Ae^{-t} - 2Ate^{-t} + At^2 e^{-t}) + 2(2Ate^{-t} - At^2 e^{-t}) + At^2 e^{-t} = 2e^{-t} \\
2Ae^{-t} - 4Ate^{-t} + At^2 e^{-t} + 4Ate^{-t} - 2At^2 e^{-t} + At^2 e^{-t} = 2e^{-t} \\
2Ae^{-t} = 2e^{-t}
\]

For this equation to be true, \(A \) must satisfy

\[2A = 2, \]

or \(A = 1. \)

\[y_p(t) = t^2 e^{-t}. \]

Therefore,

\[y(t) = C_1 te^{-t} + C_2 e^{-t} + t^2 e^{-t}. \]