Problem 10

In each of Problems 1 through 14, find the general solution of the given differential equation.

\[y'' + y = 3 \sin 2t + t \cos 2t \]

Solution

Because this ODE is linear, the general solution can be expressed as a sum of the complementary solution \(y_c(t) \) and the particular solution \(y_p(t) \).

\[y(t) = y_c(t) + y_p(t) \]

The complementary solution satisfies the associated homogeneous equation.

\[y'' + y = 0 \quad (1) \]

This is a homogeneous ODE with constant coefficients, so the solution is of the form \(y_c = e^{rt} \).

\[y_c = e^{rt} \rightarrow y'_c = re^{rt} \rightarrow y''_c = r^2e^{rt} \]

Substitute these expressions into the ODE.

\[r^2e^{rt} + e^{rt} = 0 \]

Divide both sides by \(e^{rt} \).

\[r^2 + 1 = 0 \]

\[r = \{-i, i\} \]

Two solutions to equation (1) are then \(y_c = e^{-it} \) and \(y_c = e^{it} \). By the principle of superposition, the general solution is a linear combination of these two.

\[y_c(t) = C_1e^{-it} + C_2e^{it} \]

\[= C_1[\cos(-t) + i\sin(-t)] + C_2[\cos(t) + i\sin(t)] \]

\[= C_1[\cos(t) - i\sin(t)] + C_2[\cos(t) + i\sin(t)] \]

\[= C_1 \cos t - iC_1 \sin t + C_2 \cos t + iC_2 \sin t \]

\[= (C_1 + C_2) \cos t + (-iC_1 + iC_2) \sin t \]

\[= C_3 \cos t + C_4 \sin t \]

On the other hand, the particular solution satisfies

\[y''_p + y_p = 3 \sin 2t + t \cos 2t. \]

There are two terms on the right side. For the first one, since only even derivatives are present, we will include \(A \sin 2t \) in the trial solution. For the second one, we will include \(Bt \cos 2t + C \sin 2t \). The trial solution is thus \(y_p(t) = A \sin 2t + Bt \cos 2t + C \sin 2t \). Substitute this into the ODE to determine \(A \) and \(B \) and \(C \).

\[(A \sin 2t + Bt \cos 2t + C \sin 2t)'' + (A \sin 2t + Bt \cos 2t + C \sin 2t) = 3 \sin 2t + t \cos 2t \]

\[(2A \cos 2t + B \cos 2t - 2Bt \sin 2t + 2C \cos 2t)' + (A \sin 2t + Bt \cos 2t + C \sin 2t) = 3 \sin 2t + t \cos 2t \]

www.stemjock.com
\((-4A \sin 2t - 2B \sin 2t - 2B \sin 2t - 4B \cos 2t - 4C \sin 2t) + (A \sin 2t + Bt \cos 2t + C \sin 2t) = 3 \sin 2t + t \cos 2t\)
\((-4A - 2B - 2B - 4C + A + C) \sin 2t + (-4B + B)t \cos 2t = 3 \sin 2t + t \cos 2t\)

For this equation to be true, \(A\) and \(B\) and \(C\) must satisfy the following system of equations.

\[-4A - 2B - 2B - 4C + A + C = 3\]
\[-4B + B = 1\]

Solving it yields \(A + C = -5/9\) and \(B = -1/3\), which means

\[y_p(t) = A \sin 2t + Bt \cos 2t + C \sin 2t\]
\[= (A + C) \sin 2t + Bt \cos 2t\]
\[= \frac{-5}{9} \sin 2t - \frac{1}{3} t \cos 2t.\]

Therefore,

\[y(t) = C_3 \cos t + C_4 \sin t - \frac{5}{9} \sin 2t - \frac{1}{3} t \cos 2t.\]