Problem 14

Show that the period of motion of an undamped vibration of a mass hanging from a vertical spring is \(2\pi\sqrt{L/g}\), where \(L\) is the elongation of the spring due to the mass, and \(g\) is the acceleration due to gravity.

Solution

Start by drawing a free-body diagram for the mass hanging from a spring.

![Free-body diagram](image)

Apply Newton’s second law to obtain the equation of motion.

\[
\sum F_x = ma_x
\]

The only two forces are due to the spring and gravity.

\[-kx + mg = ma_x\]

Use the fact that acceleration is the second derivative of position.

\[-kx + mg = mx''\]

\[mx'' + kx = mg\]

This is a linear inhomogeneous ODE, so the general solution can be written as a sum of the complementary solution and the particular solution.

\[x(t) = x_c(t) + x_p(t)\]

The complementary solution satisfies the associated homogeneous equation.

\[mx_c'' + kx_c = 0\] (1)

Since the coefficients are constant and this is a homogeneous ODE, the solutions are of the form \(x_c = e^{rt}\).

\[x_c = e^{rt} \quad \rightarrow \quad x'_c = re^{rt} \quad \rightarrow \quad x''_c = r^2 e^{rt}\]
Substitute these expressions to obtain an algebraic equation for \(r \).
\[
m(r^2e^{rt}) + k(e^{rt}) = 0
\]
Divide both sides by \(e^{rt} \).
\[
mr^2 + k = 0
\]
\[
r^2 = -\frac{k}{m}
\]
\[
r = \left\{-i\sqrt{\frac{k}{m}}, i\sqrt{\frac{k}{m}}\right\} = \{-i\omega, i\omega\}
\]
Two solutions to equation (1) are then \(x_c = e^{-i\omega t} \) and \(x_c = e^{i\omega t} \). By the principle of superposition, the general solution for \(x_c(t) \) is a linear combination of these two.
\[
x_c(t) = C_1 e^{-i\omega t} + C_2 e^{i\omega t}
\]
\[
= C_1 [\cos(-\omega t) + i \sin(-\omega t)] + C_2 [\cos(\omega t) + i \sin(\omega t)]
\]
\[
= C_1 [\cos(\omega t) - i \sin(\omega t)] + C_2 [\cos(\omega t) + i \sin(\omega t)]
\]
\[
= C_1 \cos\omega t - iC_1 \sin\omega t + C_2 \cos\omega t + iC_2 \sin\omega t
\]
\[
= (C_1 + C_2) \cos\omega t + (-iC_1 + iC_2) \sin\omega t
\]
\[
= C_3 \cos\omega t + C_4 \sin\omega t
\]
Since \(C_3 \) and \(C_4 \) are arbitrary, we can introduce an amplitude \(A \) and a phase \(\delta \) in order to write the two sinusoidal terms as one.
\[
x_c(t) = A \cos\delta \cos\omega t + A \sin\delta \sin\omega t
\]
\[
= A \cos(\omega t - \delta)
\]
\[
= A \cos \left(\sqrt{\frac{k}{m}} t - \delta \right)
\]
The period of the motion is
\[
T = \frac{2\pi}{\sqrt{\frac{k}{m}}} = 2\pi \sqrt{\frac{m}{k}}.
\]
In order to write this in terms of the elongation \(L \) and \(g \), we have to consider the spring in equilibrium.
Here the force due to gravity balances the force due to the spring.

\[mg = kL \]

Solve this for \(m/k \).

\[\frac{m}{k} = \frac{L}{g} \]

Therefore,

\[T = 2\pi \sqrt{\frac{L}{g}}. \]