Problem 24

The position of a certain spring-mass system satisfies the initial value problem

\[\frac{3}{2} u'' + ku = 0, \quad u(0) = 2, \quad u'(0) = v. \]

If the period and amplitude of the resulting motion are observed to be \(\pi \) and 3, respectively, determine the values of \(k \) and \(v \).

Solution

Multiply both sides of the ODE by 2/3.

\[u'' + \frac{2k}{3}u = 0 \]

The general solution is

\[u(t) = C_1 \cos \sqrt{\frac{2k}{3}} t + C_2 \sin \sqrt{\frac{2k}{3}} t. \]

Take a derivative of it with respect to \(t \).

\[u'(t) = -C_1 \sqrt{\frac{2k}{3}} \sin \sqrt{\frac{2k}{3}} t + C_2 \sqrt{\frac{2k}{3}} \cos \sqrt{\frac{2k}{3}} t \]

Apply the initial conditions to determine \(C_1 \) and \(C_2 \).

\[u(0) = C_1 = 2 \]

\[u'(0) = C_2 \sqrt{\frac{2k}{3}} = v \quad \rightarrow \quad C_2 = v \sqrt{\frac{3}{2k}} \]

The solution to the initial value problem is then

\[u(t) = 2 \cos \sqrt{\frac{2k}{3}} t + v \sqrt{\frac{3}{2k}} \sin \sqrt{\frac{2k}{3}} t. \]

Introduce an amplitude \(R \) and phase \(\delta \) to combine the two sinusoidal terms into one.

\[u(t) = R \cos \delta \cos \sqrt{\frac{2k}{3}} t + R \sin \delta \sin \sqrt{\frac{2k}{3}} t \]

\[= R \cos \left(\sqrt{\frac{2k}{3}} t - \delta \right) \]

\(R \) and \(\delta \) satisfy the following system of equations.

\[R \cos \delta = 2 \]

\[R \sin \delta = v \sqrt{\frac{3}{2k}} \]

Square both sides of each equation

\[R^2 \cos^2 \delta = 4 \]

\[R^2 \sin^2 \delta = v^2 \frac{3}{2k} \]

www.stemjock.com
and then add the respective sides to determine R.

$$R^2 \cos^2 \delta + R^2 \sin^2 \delta = 4 + \frac{v^2}{3} \frac{3}{2k}$$

$$R^2 = 4 + \frac{v^2}{2k} \frac{3}{2k}$$

$$R = \sqrt{4 + \frac{3v^2}{2k}}$$

On the other hand, the period of the motion is

$$T = \frac{2\pi}{\sqrt{\frac{2k}{3}}} = 2\pi \sqrt{\frac{3}{2k}}.$$

Use the fact that the period and amplitude are π and 3, respectively, to determine the values of k and v.

$$T = 2\pi \sqrt{\frac{3}{2k}} = \pi$$

$$R = \sqrt{4 + \frac{3v^2}{2k}} = 3$$

Solving this system of equations yields $k = 6$ and $v = \pm 2\sqrt{5}$.

www.stemjock.com