Problem 28

The position of a certain undamped spring-mass system satisfies the initial value problem

\[u'' + 2u = 0, \quad u(0) = 0, \quad u'(0) = 2. \]

(a) Find the solution of this initial value problem.

(b) Plot \(u \) versus \(t \) and \(u' \) versus \(t \) on the same axes.

(c) Plot \(u' \) versus \(u \); that is, plot \(u(t) \) and \(u'(t) \) parametrically with \(t \) as the parameter. This plot is known as a phase plot, and the \(uu' \)-plane is called the phase plane. Observe that a closed curve in the phase plane corresponds to a periodic solution \(u(t) \). What is the direction of motion on the phase plot as \(t \) increases?

Solution

Since the coefficients are constant and this ODE is homogeneous, the solutions are of the form \(u = e^{rt} \).

\[u = e^{rt} \quad \rightarrow \quad u = re^{rt} \quad \rightarrow \quad u'' = r^2 e^{rt} \]

Substitute these expressions into the ODE.

\[r^2 e^{rt} + 2(e^{rt}) = 0 \]

Divide both sides by \(e^{rt} \).

\[r^2 + 2 = 0 \]

\[r = \{ -i\sqrt{2}, i\sqrt{2} \} \]

Two solutions to the ODE are \(u = e^{-i\sqrt{2}t} \) and \(u = e^{i\sqrt{2}t} \). By the principle of superposition, the general solution is a linear combination of these two.

\[
\begin{align*}
 u(t) &= C_1 e^{-i\sqrt{2}t} + C_2 e^{i\sqrt{2}t} \\
 &= C_1 [\cos(-\sqrt{2}t) + i \sin(-\sqrt{2}t)] + C_2 [\cos(\sqrt{2}t) + i \sin(\sqrt{2}t)] \\
 &= C_1 [\cos(\sqrt{2}t) - i \sin(\sqrt{2}t)] + C_2 [\cos(\sqrt{2}t) + i \sin(\sqrt{2}t)] \\
 &= C_1 \cos \sqrt{2}t - iC_1 \sin \sqrt{2}t + C_2 \cos \sqrt{2}t + iC_2 \sin \sqrt{2}t \\
 &= (C_1 + C_2) \cos \sqrt{2}t + (-iC_1 + iC_2) \sin \sqrt{2}t \\
 &= C_3 \cos \sqrt{2}t + C_4 \sin \sqrt{2}t
\end{align*}
\]

Differentiate it with respect to \(t \).

\[
\begin{align*}
 u'(t) &= -C_3 \sqrt{2} \sin \sqrt{2}t + C_4 \sqrt{2} \cos \sqrt{2}t
\end{align*}
\]

Apply the initial conditions here to determine \(C_3 \) and \(C_4 \).

\[
\begin{align*}
 u(0) &= C_3 = 0 \\
 u'(0) &= C_4 \sqrt{2} = 2
\end{align*}
\]

Solving this system of equations yields \(C_3 = 0 \) and \(C_4 = \sqrt{2} \). Therefore, the solution to the initial value problem is

\[u(t) = \sqrt{2} \sin \sqrt{2}t. \]
\begin{align*}
x &= u(t) = \sqrt{2} \sin(\sqrt{2} t) \\
x' &= u'(t) = 2 \cos(\sqrt{2} t)
\end{align*}