Problem 11

In each of Problems 11 through 28, find the general solution of the given differential equation.

\[y''' - y'' - y' + y = 0 \]

Solution

This is a homogeneous ODE with constant coefficients, so the solution is of the form \(y = e^{rt} \).

\[y = e^{rt} \rightarrow y' = re^{rt} \rightarrow y'' = r^2 e^{rt} \rightarrow y''' = r^3 e^{rt} \]

Substitute these expressions into the ODE.

\[r^3 e^{rt} - (r^2 e^{rt}) - (re^{rt}) + e^{rt} = 0 \]

Divide both sides by \(e^{rt} \).

\[r^3 - r^2 - r + 1 = 0 \]

\[(r + 1)(r - 1)^2 = 0 \]

\[r = \{ -1, 1 \} \]

Two solutions to the ODE are then \(y = e^{-t} \) and \(y = e^t \). By using the method of reduction of order, we can obtain the general solution. Plug in \(y(t) = c(t)e^t \) to the ODE.

\[[c(t)e^t]''' - [c(t)e^t]'' - [c(t)e^t]' + [c(t)e^t] = 0 \]

Evaluate the derivatives.

\[[c'(t)e^t + c(t)e^t]' - [c'(t)e^t + c(t)e^t]' - [c'(t)e^t + c(t)e^t] + [c(t)e^t] = 0 \]

\[[c''(t)e^t + 2c'(t)e^t + c(t)e^t]' - [c''(t)e^t + 2c'(t)e^t + c(t)e^t] - [c'(t)e^t + c(t)e^t] + [c(t)e^t] = 0 \]

\[[c'''(t)e^t + 3c''(t)e^t + 3c'(t)e^t + c(t)e^t] - [c''(t)e^t + 2c'(t)e^t + c(t)e^t] - [c'(t)e^t + c(t)e^t] + [c(t)e^t] = 0 \]

Expand the left side.

\[c'''(t)e^t + 3c''(t)e^t + 3c'(t)e^t + c(t)e^t - c''(t)e^t - 2c'(t)e^t - c(t)e^t - c'(t)e^t - c(t)e^t + c(t)e^t = 0 \]

\[c'''(t)e^t + 2c''(t)e^t = 0 \]

Bring the second term to the left side and then divide both sides by \(c''(t)e^t \).

\[\frac{c'''(t)}{c''(t)} = -2 \]

The left side can be written as the derivative of a logarithm by the chain rule.

\[\frac{d}{dt} \ln |c''(t)| = -2 \]

An absolute value sign has been included because the logarithm argument cannot be negative. Integrate both sides with respect to \(t \).

\[\ln |c''(t)| = -2t + C_1 \]
Exponentiate both sides.

\[|c''(t)| = e^{-2t+C_1} \]
\[= e^{C_1}e^{-2t} \]

Place ± on the right side to remove the absolute value sign on the left.

\[c''(t) = \pm e^{C_1}e^{-2t} \]

Use a new constant \(C_2 \) for \(\pm e^{C_1} \).

\[c''(t) = C_2e^{-2t} \]

Integrate both sides with respect to \(t \) again.

\[c'(t) = -\frac{C_2}{2}e^{-2t} + C_3 \]

Integrate both sides with respect to \(t \) once more.

\[c(t) = \frac{C_2}{4}e^{-2t} + C_3 t + C_4 \]

Therefore, since \(y(t) = c(t)e^t \),

\[y(t) = C_5e^{-t} + C_3te^t + C_4e^t, \]

where a new constant \(C_5 \) is used for \(C_2/4 \).