Problem 33

In each of Problems 29 through 36, find the solution of the given initial value problem, and plot its graph. How does the solution behave as \(t \to \infty \)?

\[2y^{(4)} - y''' - 9y'' + 4y' + 4y = 0; \quad y(0) = -2, \quad y'(0) = 0, \quad y''(0) = -2, \quad y'''(0) = 0 \]

Solution

This is a homogeneous ODE with constant coefficients, so the solution is of the form \(y = e^{rt} \).

\[
\begin{align*}
y &= e^{rt} \quad \rightarrow \quad y' &= re^{rt} \quad \rightarrow \quad y'' &= r^2 e^{rt} \quad \rightarrow \quad y''' &= r^3 e^{rt} \quad \rightarrow \quad y^{(4)} &= r^4 e^{rt}
\end{align*}
\]

Substitute these expressions into the ODE.

\[
2(r^4 e^{rt}) - r^3 e^{rt} - 9(r^2 e^{rt}) + 4(re^{rt}) + 4(e^{rt}) = 0
\]

Divide both sides by \(e^{rt} \).

\[
2r^4 - r^3 - 9r^2 + 4r + 4 = 0
\]

\[
(r + 2)(2r + 1)(r - 1)(r - 2) = 0
\]

\[
r = \left\{ -2, -\frac{1}{2}, 1, 2 \right\}
\]

Four solutions to the ODE are then \(y = e^{-2t} \) and \(y = e^{-t/2} \) and \(y = e^t \) and \(y = e^{2t} \). By the principle of superposition, the general solution for \(y \) is a linear combination of these four.

\[
y(t) = C_1 e^{-2t} + C_2 e^{-t/2} + C_3 e^t + C_4 e^{2t}
\]

Differentiate this solution three times with respect to \(t \).

\[
\begin{align*}
y'(t) &= -2C_1 e^{-2t} - \frac{C_2}{2} e^{-t/2} + C_3 e^t + 2C_4 e^{2t} \\
y''(t) &= 4C_1 e^{-2t} + \frac{C_2}{4} e^{-t/2} + C_3 e^t + 4C_4 e^{2t} \\
y'''(t) &= -8C_1 e^{-2t} - \frac{C_2}{8} e^{-t/2} + C_3 e^t + 8C_4 e^{2t}
\end{align*}
\]

Apply the initial conditions now to determine \(C_1, C_2, C_3, \) and \(C_4 \).

\[
\begin{align*}
y(0) &= C_1 + C_2 + C_3 + C_4 = -2 \\
y'(0) &= -2C_1 - \frac{C_2}{2} + C_3 + 2C_4 = 0 \\
y''(0) &= 4C_1 + \frac{C_2}{4} + C_3 + 4C_4 = -2 \\
y'''(0) &= -8C_1 - \frac{C_2}{8} + C_3 + 8C_4 = 0
\end{align*}
\]

Solving this system of equations yields \(C_1 = -1/6, \ C_2 = -16/15, \ C_3 = -2/3, \) and \(C_4 = -1/10 \). Therefore,

\[
y(t) = -\frac{1}{6} e^{-2t} - \frac{16}{15} e^{-t/2} - \frac{2}{3} e^t - \frac{1}{10} e^{2t}.
\]
The first two terms tend to zero in the limit as $t \to \infty$, but the other two terms blow up and make $y(t) \to -\infty$ in the limit.