Problem 6

In each of Problems 1 through 6, express the given complex number in the form
\[R(\cos \theta + i \sin \theta) = Re^{i\theta}. \]

Solution

Use Euler’s formula to write \(e^{i\theta} \) in terms of sine and cosine.

\[-1 - i = Re^{i\theta} \]
\[= R(\cos \theta + i \sin \theta) \]
\[= R \cos \theta + iR \sin \theta \]

Match the coefficients to obtain a system of equations for \(R \) and \(\theta \).

\[R \cos \theta = -1 \quad (1) \]
\[R \sin \theta = -1 \quad (2) \]

To determine \(R \), square both sides of each equation

\[R^2 \cos^2 \theta = 1 \]
\[R^2 \sin^2 \theta = 1 \]

and then add the respective sides.

\[R^2 \cos^2 \theta + R^2 \sin^2 \theta = 1 + 1 \]
\[R^2 = 2 \]
\[R = \sqrt{2} \]

Divide both sides of equation (2) by the respective sides of equation (1).

\[\tan \theta = 1 \]
\[\theta = \frac{5\pi}{4} + 2n\pi, \quad n = 0, \pm 1, \pm 2, \ldots \]

Note that adding any multiple of \(2\pi \) does not change the point’s position on the \(xy \)-plane. Therefore,

\[-1 - i = \sqrt{2}e^{i(5\pi/4+2n\pi)} \].