Problem 6

In each of Problems 1 through 8, determine the general solution of the given differential equation.

\[y^{(4)} + 2y'' + y = 3 + \cos 2t \]

Solution

This is a linear inhomogeneous ODE, so the general solution can be expressed as a sum of \(y_c(t) \) and \(y_p(t) \), the complementary solution and the particular solution, respectively.

\[y(t) = y_c(t) + y_p(t) \]

The complementary solution satisfies the associated homogeneous equation.

\[y_c^{(4)} + 2y_c'' + y_c = 0 \] \hspace{1cm} (1)

Since each term on the left has constant coefficients, the solution is of the form \(y_c = e^{rt} \).

\[
\begin{align*}
y_c &= e^{rt} \\
y_c' &= re^{rt} \\
y_c'' &= r^2e^{rt} \\
y_c''' &= r^3e^{rt} \\
y_c^{(4)} &= r^4e^{rt}
\end{align*}
\]

Substitute these expressions into the ODE.

\[r^4e^{rt} + 2(r^2e^{rt}) + e^{rt} = 0 \]

Divide both sides by \(e^{rt} \).

\[r^4 + 2r^2 + 1 = 0 \]

\[(r^2 + 1)^2 = 0 \]

\[r = \{-i, i\} \]

Two solutions to equation (1) are then \(y_c = e^{-it} \) and \(y_c = e^{it} \). Since the multiplicity of each root is 2, a second linearly independent solution can be obtained from each one by including a factor of \(t \): \(y_c = te^{-it} \) and \(y_c = te^{it} \). By the principle of superposition, the general solution for \(y_c \) is a linear combination of these four.

\[
y_c(t) = C_1e^{-it} + C_2e^{it} + C_3te^{-it} + C_4te^{it} = C_1(\cos t - i \sin t) + C_2(\cos t + i \sin t) + C_3t(\cos t - i \sin t) + C_4t(\cos t + i \sin t) = (C_1 + C_2)\cos t + (-iC_1 + iC_2)\sin t + t(C_3 + C_4)\cos t + t(-iC_3 + iC_4)\sin t = C_5\cos t + C_6\sin t + C_7t\cos t + C_8t\sin t
\]

On the other hand, the particular solution satisfies

\[y_p^{(4)} + 2y_p'' + y_p = 3 + \cos 2t. \]

The right side has two terms. To account for the first one, we will include \(A \) in the trial solution. To account for the second one, we will include \(B \cos 2t \) in the trial solution. Substitute \(y_p(t) = A + B \cos 2t \) in the ODE to determine \(A \) and \(B \).

\[
(A + B \cos 2t)^{(4)} + 2(A + B \cos 2t)'' + (A + B \cos 2t) = 3 + \cos 2t
\]

www.stemjock.com
Evaluate the derivatives.

\[(16B \cos 2t) + 2(-4B \cos 2t) + (A + B \cos t) = 3 + \cos 2t\]

Simplify the left side.

\[A + 9B \cos 2t = 3 + \cos 2t\]

Match the coefficients to obtain a system of equations for \(A\) and \(B\).

\[
\begin{align*}
A &= 3 \\
9B &= 1
\end{align*}
\]

Solving this system yields \(A = 3\) and \(B = 1/9\). As a result, the particular solution is \(y_p(t) = 3 + (1/9) \cos 2t\), and the general solution is

\[y(t) = C_5 \cos t + C_6 \sin t + C_7 t \cos t + C_8 t \sin t + 3 + \frac{1}{9} \cos 2t.\]