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Problem 26

In each of Problems 24 through 27, find the Laplace transform Y (s) = £{y} of the solution of the
given initial value problem. A method of determining the inverse transform is developed in
Section 6.3. You may wish to refer to Problems 21 through 24 in Section 6.1.
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Solution
Let f(t) represent the piecewise function on the right side.
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y' 4y = f(t) = {

Because this ODE is linear, the Laplace transform can be applied to solve it. The Laplace
transform of a function y(t) is defined here as

V() = £yt = [ e yte)

Consequently, the first and second derivatives transform as follows.
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Apply the Laplace transform to both sides of the ODE.
L{y" + 4y} = L{f ()}

Use the fact that the transform is a linear operator.
L{y"} +4L{y} = L{f (1)}
Y (5) = sy(0) ~ O + 4 (s) = [ e pe)ds
0

Plug in the initial conditions, y(0) = 0 and 3/(0) = 0, and f(¢).
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Divide both sides by s + 4.

Take the inverse Laplace transform of Y'(s) now to recover y(t). Note that H(t) is the Heaviside
function, which is defined to be 1 if ¢t > 0 and 0 if ¢ < 0.
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