Problem 36

Consider Bessel’s equation of order zero

\[ty'' + y' + ty = 0. \]

Recall from Section 5.7 that \(t = 0 \) is a regular singular point for this equation, and therefore solutions may become unbounded as \(t \to 0 \). However, let us try to determine whether there are any solutions that remain finite at \(t = 0 \) and have finite derivatives there. Assuming that there is such a solution \(y = \phi(t) \), let \(Y(s) = \mathcal{L}\{\phi(t)\} \).

(a) Show that \(Y(s) \) satisfies

\[(1 + s^2)Y'(s) + sY(s) = 0. \]

(b) Show that \(Y(s) = c(1 + s^2)^{-1/2} \), where \(c \) is an arbitrary constant.

(c) Writing \((1 + s^2)^{-1/2} = s^{-1}(1 + s^{-2})^{-1/2} \), expanding in a binomial series valid for \(s > 1 \), and assuming that it is permissible to take the inverse transform term by term, show that

\[y = c \sum_{n=0}^{\infty} \frac{(-1)^n2n}{2^{2n}(n!)^2} = cJ_0(t), \]

where \(J_0 \) is the Bessel function of the first kind of order zero. Note that \(J_0(0) = 1 \) and that \(J_0 \) has finite derivatives of all orders at \(t = 0 \). It was shown in Section 5.7 that the second solution of this equation becomes unbounded as \(t \to 0 \).