Problem 37

For each of the following initial value problems, use the results of Problem 29 to find the differential equation satisfied by \(Y(s) = \mathcal{L}\{\phi(t)\} \), where \(y = \phi(t) \) is the solution of the given initial value problem.

(a) \(y'' - ty = 0; \quad y(0) = 1, \quad y'(0) = 0 \) (Airy’s equation)

(b) \((1 - t^2)y'' - 2ty' + \alpha(\alpha + 1)y = 0; \quad y(0) = 0, \quad y'(0) = 1 \) (Legendre’s equation)

Note that the differential equation for \(Y(s) \) is of first order in part (a), but of second order in part (b). This is due to the fact that \(t \) appears at most to the first power in the equation of part (a), whereas it appears to the second power in that of part (b). This illustrates that the Laplace transform is not often useful in solving differential equations with variable coefficients, unless all the coefficients are at most linear functions of the independent variable.