Problem 16

A certain spring-mass system satisfies the initial value problem

\[u'' + \frac{1}{4}u' + u = kg(t), \quad u(0) = 0, \quad u'(0) = 0, \]

where \(g(t) = u_{3/2}(t) - u_{5/2}(t) \) and \(k > 0 \) is a parameter.

(a) Sketch the graph of \(g(t) \). Observe that it is a pulse of unit magnitude extending over one time unit.

(b) Solve the initial value problem.

(c) Plot the solution for \(k = 1/2, \ k = 1, \) and \(k = 2 \). Describe the principal features of the solution and how they depend on \(k \).

(d) Find, to two decimal places, the smallest value of \(k \) for which the solution \(u(t) \) reaches the value 2.

(e) Suppose \(k = 2 \). Find the time \(\tau \) after which \(|u(t)| < 0.1 \) for all \(t > \tau \).

Solution

Here is a plot of \(g(t) \) versus \(t \).

Because the ODE is linear, the Laplace transform can be applied to solve it. The Laplace transform of a function \(u(t) \) is defined here as

\[U(s) = \mathcal{L}\{u(t)\} = \int_0^\infty e^{-st}u(t)\,dt. \]
Consequently, the first and second derivatives transform as follows.

\[\mathcal{L}\left\{ \frac{du}{dt} \right\} = sU(s) - u(0) \]
\[\mathcal{L}\left\{ \frac{d^2u}{dt^2} \right\} = s^2U(s) - su(0) - u'(0) \]

Apply the Laplace transform to both sides of the ODE.

\[\mathcal{L}\left\{ u'' + \frac{1}{4}u' + u \right\} = \mathcal{L}\{kg(t)\} = \mathcal{L}\{k[u_{3/2}(t) - u_{5/2}(t)]\} \]

Use the fact that the transform is a linear operator.

\[\mathcal{L}\{u''\} + \frac{1}{4}\mathcal{L}\{u'\} + \mathcal{L}\{u\} = k\mathcal{L}\{u_{3/2}(t)\} - k\mathcal{L}\{u_{5/2}(t)\} \]

\[[s^2U(s) - su(0) - u'(0)] + \frac{1}{4}[sU(s) - u(0)] + [U(s)] = k\int_0^\infty e^{-st}[u_{3/2}(t)] \, dt - k\int_0^\infty e^{-st}[u_{5/2}(t)] \, dt \]

Plug in the initial conditions, \(u(0) = 0 \) and \(u'(0) = 0 \).

\[[s^2U(s)] + \frac{1}{4}[sU(s)] + [U(s)] = k\int_{3/2}^\infty e^{-st} \, dt - k\int_{5/2}^\infty e^{-st} \, dt \]

As a result of applying the Laplace transform, the ODE has reduced to an algebraic equation for \(U(s) \), the transformed solution.

\[\left(s^2 + \frac{1}{4}s + 1 \right) U(s) = k \left(\frac{1}{s}e^{-st} \right) \bigg|_{3/2}^\infty - k \left(\frac{1}{s}e^{-st} \right) \bigg|_{5/2}^\infty \]

\[= k \left(\frac{1}{s}e^{-3s/2} \right) - k \left(\frac{1}{s}e^{-5s/2} \right) \]

Solve for \(U(s) \) and write the right side in terms of known transforms.

\[U(s) = \frac{k}{s(s^2 + \frac{1}{4} s + 1)} e^{-3s/2} - \frac{k}{s(s^2 + \frac{1}{4} s + 1)} e^{-5s/2} \]

Use partial fraction decomposition.

\[\frac{k}{s(s^2 + \frac{1}{4} s + 1)} = \frac{A}{s} + \frac{Bs + C}{s^2 + \frac{1}{4} s + 1} \]

Multiply both sides by \(s(s^2 + \frac{1}{4} s + 1) \).

\[k = A \left(s^2 + \frac{1}{4}s + 1 \right) + (Bs + C)s \]

Plug in three random values for \(s \) to get a system of three equations for \(A, B, \) and \(C \).

\[s = 0 : \quad k = A \]
\[s = 1 : \quad k = \frac{9}{4} A + B + C \]
\[s = 2 : \quad k = \frac{11}{2} A + 4B + 2C \]
Solving this system yields $A = k$, $B = -k$, and $C = -k/4$.

$$U(s) = \left(\frac{k}{s} + \frac{-ks - k}{4} \right) e^{-3s/2} - \left(\frac{k}{s} + \frac{-ks - k}{4} \right) e^{-5s/2}$$

Complete the square in the denominators.

$$U(s) = \left(\frac{k}{s} + \frac{-ks - k}{4} \right) e^{-3s/2} - \left(\frac{k}{s} + \frac{-ks - k}{4} \right) e^{-5s/2}$$

$$U(s) = \left[\frac{k}{s} - k \frac{s + \frac{1}{8}}{(s + \frac{1}{8})^2 + \frac{63}{64}} \right] e^{-3s/2} - \left[\frac{k}{s} - k \frac{s + \frac{1}{8}}{(s + \frac{1}{8})^2 + \frac{63}{64}} \right] e^{-5s/2}$$

Make it so that $s + \frac{1}{8}$ appears in the numerators.

$$U(s) = \left[\frac{k}{s} - k \frac{s + \frac{1}{8}}{(s + \frac{1}{8})^2 + \frac{63}{64}} \right] e^{-3s/2} - \left[\frac{k}{s} - k \frac{s + \frac{1}{8}}{(s + \frac{1}{8})^2 + \frac{63}{64}} \right] e^{-5s/2}$$

Now take the inverse Laplace transform of $U(s)$ to get $u(t)$.

$$u(t) = \mathcal{L}^{-1}\{U(s)\}$$

$$u(t) = \mathcal{L}^{-1}\left\{ \left[\frac{k}{s} - k \frac{s + \frac{1}{8}}{(s + \frac{1}{8})^2 + \frac{63}{64}} \right] e^{-3s/2} - \left[\frac{k}{s} - k \frac{s + \frac{1}{8}}{(s + \frac{1}{8})^2 + \frac{63}{64}} \right] e^{-5s/2} \right\}$$

Below are several plots of $u(t)$ versus t for several values of k.

www.stemjock.com
The first maximum of u seems to be proportional to k; the maximum is 2 when $k \approx 2.51$. The solution starts to oscillate at $t = 3/2$ and has an amplitude that decays with time.
Adjust the lower and upper bounds of the $k = 2$ graph to -0.1 and 0.1, respectively, to find the time at which the amplitude is smaller than 0.1 for all later times.