Problem 19

Consider the initial value problem

\[y'' + y = f(t), \quad y(0) = 0, \quad y'(0) = 0, \]

where

\[f(t) = u_0(t) + 2 \sum_{k=1}^{n} (-1)^k u_{k\pi}(t). \]

(a) Draw the graph of \(f(t) \) on an interval such as \(0 \leq t \leq 6\pi \).

(b) Find the solution of the initial value problem.

(c) Let \(n = 15 \) and plot the graph of the solution for \(0 \leq t \leq 60 \). Describe the solution and explain why it behaves as it does.

(d) Investigate how the solution changes as \(n \) increases. What happens as \(n \to \infty \)?

Solution

On the interval \(0 \leq t \leq 6\pi \), \(u_{k\pi}(t) \) is nonzero if \(k < 6 \) and 0 if \(k \geq 6 \).

\[
\begin{align*}
f(t) &= u_0(t) + 2 \sum_{k=1}^{5} (-1)^k u_{k\pi}(t) + 2 \sum_{k=6}^{n} (-1)^k u_{k\pi}(t) \\
&= u_0(t) + 2 \sum_{k=1}^{5} (-1)^k u_{k\pi}(t) + 2 \sum_{k=6}^{n} (-1)^k(0) \\
&= u_0(t) + 2 \sum_{k=1}^{5} (-1)^k u_{k\pi}(t)
\end{align*}
\]
Because the ODE is linear, the Laplace transform can be used to solve it. The Laplace transform of a function \(y(t) \) is defined to be

\[
Y(s) = \mathcal{L}\{y(t)\} = \int_0^\infty e^{-st}y(t)\,dt.
\]

Consequently, the first and second derivatives transform as follows.

\[
\mathcal{L}\left\{\frac{dy}{dt}\right\} = sY(s) - y(0)
\]

\[
\mathcal{L}\left\{\frac{d^2y}{dt^2}\right\} = s^2Y(s) - sy(0) - y'(0)
\]

Substitute the provided function for \(f(t) \) and take the Laplace transform of both sides of the ODE.

\[
\mathcal{L}\{y'' + y\} = \mathcal{L}\left\{u_0(t) + 2\sum_{k=1}^{n}(-1)^k u_{k\pi}(t)\right\}
\]

Use the fact that the transform is a linear operator.

\[
\mathcal{L}\{y''\} + \mathcal{L}\{y\} = \mathcal{L}\{u_0(t)\} + 2\sum_{k=1}^{n}(-1)^k \mathcal{L}\{u_{k\pi}(t)\}
\]

\[
[s^2Y(s) - sy(0) - y'(0)] + Y(s) = \int_0^\infty e^{-st}u_0(t)\,dt + 2\sum_{k=1}^{n}(-1)^k \int_0^\infty e^{-st}u_{k\pi}(t)\,dt
\]

Plug in the initial conditions, \(y(0) = 0 \) and \(y'(0) = 0 \).

\[
[s^2Y(s)] + Y(s) = \int_0^\infty e^{-st} dt + 2\sum_{k=1}^{n}(-1)^k \int_{k\pi}^\infty e^{-st} dt
\]

\[
(s^2 + 1)Y(s) = \frac{1}{s} + 2\sum_{k=1}^{n}(-1)^k \left(\frac{e^{-k\pi s}}{s} \right)
\]

Solve for \(Y(s) \).

\[
Y(s) = \frac{1}{s(s^2 + 1)} + 2\sum_{k=1}^{n}(-1)^k \left[\frac{1}{s(s^2 + 1)} \right] e^{-k\pi s}
\]

Now write it in terms of known transforms by using partial fraction decomposition.

\[
Y(s) = \left(\frac{1}{s} - \frac{s}{s^2 + 1} \right) + 2\sum_{k=1}^{n}(-1)^k \left(\frac{1}{s} - \frac{s}{s^2 + 1} \right) e^{-k\pi s}
\]
Take the inverse Laplace transform of \(Y(s) \) to get \(y(t) \).

\[
y(t) = \mathcal{L}^{-1}\{Y(s)\} \\
= \mathcal{L}^{-1}\left\{ \left(\frac{1}{s} - \frac{s}{s^2 + 1} \right) + 2 \sum_{k=1}^{n} (-1)^k \left(\frac{1}{s} - \frac{s}{s^2 + 1} \right) e^{-k\pi s} \right\} \\
= \mathcal{L}^{-1}\left\{ \frac{1}{s} - \frac{s}{s^2 + 1} \right\} + 2 \sum_{k=1}^{n} (-1)^k \mathcal{L}^{-1}\left\{ \left(\frac{1}{s} - \frac{s}{s^2 + 1} \right) e^{-k\pi s} \right\} \\
= 1 - \cos t + 2 \sum_{k=1}^{n} (-1)^k \left[1 - \cos(t - k\pi) \right] H(t - k\pi) \\
= 1 - \cos t + 2 \sum_{k=1}^{n} (-1)^k \left[1 - \cos(t - k\pi) \right] u_{k\pi}(t)
\]

Graphs of \(y(t) \) versus \(t \) are shown below for \(n = 1, n = 2, n = 5, n = 10, \) and \(n = 15 \).
The value of n determines the number of ridges as the graph increases. The graph oscillates with an amplitude of 1 and a period of 2π about the value $y = 2n + 1$. If $n \to \infty$, the graph grows at a linear rate forever.