Problem 23

Consider the initial value problem

\[y'' + y = h(t), \quad y(0) = 0, \quad y'(0) = 0, \]

where

\[f(t) = u_0(t) + 2 \sum_{k=1}^{n} (-1)^k u_{11k/4}(t). \]

Observe that this problem is identical to Problem 19 except that the frequency of the forcing term has been increased somewhat.

(a) Find the solution of this initial value problem.

(b) Let \(n \geq 33 \) and plot the solution for \(0 \leq t \leq 90 \) or longer. Your plot should show a clearly recognizable beat.

(c) From the graph in part (b), estimate the “slow period” and the “fast period” for this oscillator.

(d) For a sinusoidally forced oscillator, it was shown in Section 3.8 that the “slow frequency” is given by \(|\omega - \omega_0|/2\), where \(\omega_0 \) is the natural frequency of the system and \(\omega \) is the forcing frequency. Similarly, the “fast frequency” is \((\omega + \omega_0)/2\). Use these expressions to calculate the “fast period” and the “slow period” for the oscillator in this problem. How well do the results compare with your estimates from part (c)?

[Typo: \(f(t) \) should be \(h(t) \).]