Problem 22

Problems 17 through 22 deal with the effect of a sequence of impulses on an undamped oscillator. Suppose that
\[y'' + y = f(t), \quad y(0) = 0, \quad y'(0) = 0. \]

For each of the following choices for \(f(t) \):

(a) Try to predict the nature of the solution without solving the problem.

(b) Test your prediction by finding the solution and drawing its graph.

(c) Determine what happens after the sequence of impulses ends.

\[f(t) = \sum_{k=1}^{40} (-1)^{k+1} \delta(t - 11k/4) \]

Solution

Because the ODE is linear, the Laplace transform can be used to solve it. The Laplace transform of a function \(y(t) \) is defined to be
\[Y(s) = \mathcal{L}\{y(t)\} = \int_0^\infty e^{-st} y(t) \, dt. \]

Consequently, the first and second derivatives transform as follows.
\[
\mathcal{L} \left\{ \frac{dy}{dt} \right\} = sY(s) - y(0)
\]
\[
\mathcal{L} \left\{ \frac{d^2y}{dt^2} \right\} = s^2Y(s) - sy(0) - y'(0)
\]

Substitute the function for \(f(t) \) and take the Laplace transform of both sides of the ODE.
\[
\mathcal{L}\{y'' + y\} = \mathcal{L} \left\{ \sum_{k=1}^{40} (-1)^{k+1} \delta(t - 11k/4) \right\}
\]

Use the fact that the transform is a linear operator.
\[
\mathcal{L}\{y''\} + \mathcal{L}\{y\} = \sum_{k=1}^{40} (-1)^{k+1} \mathcal{L}\{\delta(t - 11k/4)\}
\]
\[
[s^2Y(s) - sy(0) - y'(0)] + Y(s) = \sum_{k=1}^{40} (-1)^{k+1} \int_0^\infty e^{-st} \delta(t - 11k/4) \, dt
\]

Plug in the initial conditions, \(y(0) = 0 \) and \(y'(0) = 0 \).
\[
[s^2Y(s)] + Y(s) = \sum_{k=1}^{40} (-1)^{k+1} e^{-s(11k/4)}
\]
\[
(s^2 + 1)Y(s) = \sum_{k=1}^{40} (-1)^{k+1} e^{-11ks/4}
\]
Solve for $Y(s)$.

$$ Y(s) = \sum_{k=1}^{40} (-1)^{k+1} \frac{1}{s^2 + 1} e^{-11ks/4} $$

Now take the inverse Laplace transform of $Y(s)$ to get $y(t)$.

$$ y(t) = \mathcal{L}^{-1}\{Y(s)\} $$

$$ = \mathcal{L}^{-1}\left\{ \sum_{k=1}^{40} (-1)^{k+1} \frac{1}{s^2 + 1} e^{-11ks/4} \right\} $$

$$ = \sum_{k=1}^{40} (-1)^{k+1} \mathcal{L}^{-1}\left\{ \frac{1}{s^2 + 1} e^{-11ks/4} \right\} $$

$$ = \sum_{k=1}^{40} (-1)^{k+1} \sin(t - 11k/4)H(t - 11k/4) $$

$$ = \sum_{k=1}^{40} (-1)^{k+1} \sin(t - 11k/4)u_{11k/4}(t) $$

Below is a plot of $y(t)$ versus t up until $t = 20$.

Each of the kinks in the graph represents a point where a delta function strikes. Because of the factor of $(-1)^{k+1}$, the direction that the delta functions act upon alternates. The arrows indicate where and in what direction the delta functions of unit magnitude act.
Below is a plot of $y(t)$ versus t up until $t = 120$.