Problem 12

(a) If \(f(t) = t^m \) and \(g(t) = t^n \), where \(m \) and \(n \) are positive integers, show that

\[
f * g = t^{m+n+1} \int_0^1 u^m (1-u)^n \, du.
\]

(b) Use the convolution theorem to show that

\[
\int_0^1 u^m (1-u)^n \, du = \frac{m!n!}{(m+n+1)!}.
\]

(c) Extend the result of part (b) to the case where \(m \) and \(n \) are positive numbers but not necessarily integers.

Solution

Part (a)

Evaluate the convolution of \(f \) and \(g \).

\[
f * g = \int_0^t f(t-\tau)g(\tau) \, d\tau
\]

\[
= \int_0^t (t-\tau)^m (\tau)^n \, d\tau
\]

\[
= \int_0^t \left[t \left(1 - \frac{\tau}{t} \right) \right]^m \left[\frac{\tau}{t} \right]^n \, d\tau
\]

\[
= \int_0^t t^m \left(1 - \frac{\tau}{t} \right)^m \left(\frac{\tau}{t} \right)^n \, d\tau
\]

\[
= t^{m+n} \int_0^1 \left(1 - \frac{t}{t} \right)^m \left(\frac{t}{t} \right)^n \, d\tau
\]

Make the substitution \(u = \tau/t \). Then \(du = d\tau/t \).

\[
f * g = t^{m+n} \int_0^1 (1-u)^m u^n (t \, du)
\]

Therefore,

\[
f * g = t^{m+n+1} \int_0^1 u^m (1-u)^n \, du.
\]
Part (b)

According to the convolution theorem, the inverse Laplace transform of a product $F(s)G(s)$ is a convolution integral.

$$
\int_0^t f(t-\tau)g(\tau) \, d\tau = \mathcal{L}^{-1}\{F(s)G(s)\}
$$

Use this result in equation (1).

$$
\hat{f \ast g} = \int_0^t (t-\tau)^m (\tau)^n \, d\tau = \mathcal{L}^{-1}\{\mathcal{L}\{t^m\}\mathcal{L}\{t^n\}\}
$$

$$
= \mathcal{L}^{-1}\left\{ \frac{m!}{s^{m+1}} \right\} \mathcal{L}^{-1}\left\{ \frac{n!}{s^{n+1}} \right\}
$$

$$
= \frac{m!n!}{s^{m+n+1}} \mathcal{L}^{-1}\left\{ \frac{1}{s^{m+n+1}} \right\}
$$

$$
= \frac{m!n!}{(m+n+1)!} \mathcal{L}^{-1}\left\{ \frac{(m+n+1)!}{s^{m+n+1}} \right\}
$$

$$
= \frac{m!n!}{(m+n+1)!} t^{m+n+1}
$$

Therefore, for positive integers,

$$
\int_0^1 u^m (1-u)^n \, du = \frac{m!n!}{(m+n+1)!} t^{m+n+1}
$$

$$
\int_0^1 u^m (1-u)^n \, du = \frac{m!n!}{(m+n+1)!}.
$$

Part (c)

It was shown in part (c) of Problem 30 in Section 6.1 that $\Gamma(n+1) = n!$. The gamma function is an extension of the factorial function in the case that n is positive but not an integer. Use this result here.

$$
\int_0^1 u^m (1-u)^n \, du = \frac{\Gamma(m+1)\Gamma(n+1)}{\Gamma(m+n+2)}
$$

www.stemjock.com