Exercise 10

Prove that

(a) \(z \) is real if and only if \(\bar{z} = z \);

(b) \(z \) is either real or pure imaginary if and only if \(z^2 = \bar{z}^2 \).

Solution

Part (a)

Suppose that \(z \) is real. Then \(z = x + i0 = x \) and \(\bar{z} = x - i0 = x \). Thus, \(\bar{z} = z \).

Suppose that \(\bar{z} = z \). Then \(x - iy = x + iy \), or \(-iy = iy \). This equation is only satisfied if \(y = 0 \). The imaginary component is zero, so \(z \) is real.

Therefore, \(z \) is real if and only if \(\bar{z} = z \).

Part (b)

Suppose that \(z \) is real. Then \(\bar{z} = z \) from part (a). Square both sides to get \(z^2 = \bar{z}^2 \).

Suppose that \(z \) is purely imaginary. Then \(z = 0 + iy = iy \) and \(\bar{z} = 0 - iy = -iy \). Then \(z^2 = -y^2 = \bar{z}^2 \).

Suppose that \(z^2 = \bar{z}^2 \). Then

\[
(x - iy)^2 = (x + iy)^2 \\
x^2 - 2ixy - y^2 = x^2 + 2ixy - y^2 \\
-2ixy = 2ixy \\
x = 0 \quad \text{or} \quad y = 0.
\]

Thus, \(z = x + iy \) is either real or purely imaginary.

Therefore, \(z \) is either real or purely imaginary if and only if \(z^2 = \bar{z}^2 \).