Exercise 6

Use results in Sec. 5 to show that when z_2 and z_3 are nonzero,

(a)
$$\overline{\left(\frac{z_1}{z_2 z_3}\right)} = \frac{\overline{z_1}}{\overline{z_2} \overline{z_3}};$$
 (b) $\left|\frac{z_1}{z_2 z_3}\right| = \frac{|z_1|}{|z_2||z_3|}.$

Solution

Part (a)

$$\overline{\left(\frac{z_1}{z_2 z_3}\right)} = \overline{\left(\frac{z_1}{(z_2 z_3)}\right)}$$

$$= \frac{\overline{z_1}}{\overline{z_2 z_3}}$$

$$= \frac{\overline{z_1}}{\overline{z_2} \overline{z_3}}$$

Part (b)

$$\left| \frac{z_1}{z_2 z_3} \right|^2 = \left(\frac{z_1}{z_2 z_3} \right) \overline{\left(\frac{z_1}{z_2 z_3} \right)}$$

$$= \left(\frac{z_1}{z_2 z_3} \right) \left(\frac{\overline{z_1}}{\overline{z_2} \overline{z_3}} \right)$$

$$= \frac{z_1 \overline{z_1}}{z_2 z_3 \overline{z_2} \overline{z_3}}$$

$$= \frac{|z_1|^2}{z_2 \overline{z_2} z_3 \overline{z_3}}$$

$$= \frac{|z_1|^2}{|z_2|^2 |z_3|^2}$$

$$= \left(\frac{|z_1|}{|z_2||z_3|} \right)^2$$

Therefore,

$$\left|\frac{z_1}{z_2 z_3}\right| = \frac{|z_1|}{|z_2||z_3|}$$

for any three complex numbers, z_1 and z_2 and z_3 , with z_2 and z_3 being nonzero.