## Problem 1.10

Consider the first 25 digits in the decimal expansion of  $\pi$  (3, 1, 4, 1, 5, 9, ...).

- (a) If you selected one number at random, from this set, what are the probabilities of getting each of the 10 digits?
- (b) What is the most probable digit? What is the median digit? What is the average value?
- (c) Find the standard deviation for this distribution.

## Solution

The decimal expansion of  $\pi$  to the first 25 digits is

3.141592653589793238462643...

Below is a histogram that shows the frequency of each digit.



The probability of choosing a particular digit is the frequency over the total number of digits.

$$0: \quad \frac{0}{25} = 0.00$$

5: 
$$\frac{3}{25} = 0.12$$

1: 
$$\frac{2}{25} = 0.08$$

$$6: \quad \frac{3}{25} = 0.12$$

$$2: \quad \frac{3}{25} = 0.12$$

7: 
$$\frac{1}{25} = 0.04$$

$$3: \quad \frac{5}{25} = 0.20$$

$$8: \quad \frac{2}{25} = 0.08$$

4: 
$$\frac{3}{25} = 0.12$$

9: 
$$\frac{3}{25} = 0.12$$

Use the histogram to write the set of all 25 digits from smallest to largest.

$$\{1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 8, 8, 9, 9, 9\}$$

The median is 4, the highlighted number in the center of this set (if there were two, their average would be taken); the most probable digit chosen is 3, the number with the highest frequency; the average value is

$$\langle j \rangle = \frac{\sum_{j} j N(j)}{\sum_{j} N(j)} = \frac{0(0) + 1(2) + 2(3) + 3(5) + 4(3) + 5(3) + 6(3) + 7(1) + 8(2) + 9(3)}{0 + 2 + 3 + 5 + 3 + 3 + 1 + 2 + 3}$$
$$= \frac{118}{25}$$
$$= 4.72;$$

the average square value is

$$\langle j^2 \rangle = \frac{\sum_j j^2 N(j)}{\sum_j N(j)} = \frac{0^2(0) + 1^2(2) + 2^2(3) + 3^2(5) + 4^2(3) + 5^2(3) + 6^2(3) + 7^2(1) + 8^2(2) + 9^2(3)}{0 + 2 + 3 + 5 + 3 + 3 + 1 + 2 + 3}$$
$$= \frac{710}{25}$$
$$= 28.4;$$

and the standard deviation of the distribution is

$$\sigma = \sqrt{\langle j^2 \rangle - \langle j \rangle^2} = \sqrt{28.4 - 4.72^2} \approx 2.47.$$