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Problem 2.33

Determine the transmission coefficient for a rectangular barrier (same as Equation 2.148, only
with V(x) = 4+Vp > 0 in the region —a < z < a). Treat separately the three cases E < 1},

E =V, and E > Vj (note that the wave function inside the barrier is different in the three cases).
Partial answer: for E < Vp,%?

7 2a
-1 _ 0 02 —
T 1-1-4i Vo = )Slnh (h Vv 2m(Vy E))

Solution

The governing equation for the wave function ¥(z,t) is the Schrodinger equation.

ov B2 92U
L s . )
e om D2 +V(z, t)¥(z,t), —oo<z<o0, t>0

For a rectangular barrier,

0 ifz<-—a
V(z,t)=V(x)=<(Vy if —a<z<a,
0 ifz>a
which means the PDE becomes
oV h? 0%W
h—=———— + V(2)¥(x,1).
! ot 2m Ox? +V(2)¥(2,1)

Since information about the eigenstates and their corresponding energies is desired, the method of
separation of variables is opted for. This method works because Schrodinger’s equation and its
associated boundary conditions (¥ and its derivatives tend to zero as x — +00) are linear and
homogeneous. Assume a product solution of the form W(x,t) = ¢ (x)¢(t) and plug it into the
PDE.

ind [(z)p(t)] = —ﬁﬁ[w(ﬂi)ﬂt)] + V(@) [th(z)o(t)]
ot 2m Oz?
Evaluate the derivatives.
2
i (x)d'(t) = —Lw”($)¢(t) + V(@) (z)d(t)

2m

Divide both sides by ¥ (x)¢(t) in order to separate variables.

LI R

(1) 2m ¢(x)

The only way a function of ¢t can be equal to a function of x is if both are equal to a constant E.

L0 W)
o)~ 2m ()

52This is a good example of tunneling—classically the particle would bounce back.

+V(x)

+V(z)=FE
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As a result of using the method of separation of variables, the Schrodinger equation has reduced
to two ODEs, one in x and one in t.

won
o ="
R
om () +V(z)=FE

Values of E for which the boundary conditions are satisfied are called the eigenvalues (or
eigenenergies in this context), and the nontrivial solutions associated with them are called the
eigenfunctions (or eigenstates in this context). The ODE in x is known as the time-independent
Schrodinger equation (TISE) and can be written as

&y _ 2m
dz?  h?
Split up the ODE over the intervals that V' (x) is defined on.

[V(z) = Eli.

d? 2m d? 2m
=SB o> = (W-EW. —a<u<a

The solution for ¢ on the interval —a < x < a depends on whether V) — F >0, Vj — F =0, or
Vo — E < 0. Each of these cases will be examined in turn.

Vi(x)

____._._..IJO_____

Note that scattering states correspond to £ > 0. In each case, the aim is to determine the
reflection and transmission coefficients.
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CaseI: Vj — E >0

d?i 2mE
rriai

d*y  2m

W:ﬁ(VO—E)% —a<r<a

In this case, the general solution on —a < x < a can be written in terms of hyperbolic sine and
hyperbolic cosine.

Aetkr | Be~ike ifz < —a
Y(z) = ¢ Ccoshlx + Dsinhlx if —a<z<a
Fetkr 4 Qe—ike ifz>a
Here
2mE 2m(Vy — F
k= ;Ln and f{= m(ﬁo)'

Solving the ODE in ¢ yields ¢(t) = e "Bt/h which means the product solution is a linear
combination of waves travelling to the left and to the right (on z < —a and z > a).

Acilka—Et/h) | pe—i(ke+Et/h) ifr<—a
P(x)o(t) = § Ce™ B/ cosh bx + De™ B sinh bz if —a <2 <a
Feilke—Et/h) 4 ye—i(ke+Et/h) ifx>a

Assuming there’s a plane wave incident from the left, G = 0, and the reflection and transmission
coefficients are R = |B/A|?> and T = |F/A|?, respectively. Require the wave function [and
consequently 1(z)] to be continuous at x = —a and = = a to determine two of the constants.
lim ¢(z) = lm (z): Ae ™ 4 Be* = Ccoshla — Dsinh/a
T——a~ z——at
lim (z) = lim t(z): Ccoshla+ Dsinhla = Fe*® + Ge™a

r—+a~ z—+at

Integrate both sides of the TISE with respect to « from —a — € to —a + ¢, where € is a really small
positive number, to determine one more constant.

/ Y / T2 ) () de

2 2
—a—e¢ dx —a—e¢ h

dap |0t ¢ 2m —ate om
Wl =) GECEu@d [ - B dr
2mE - 2m —ate
= () /_H o+ 23 (Vo — E)(~a) /_ da
2mE 2m
=2 (—a)e+ 72 (Vo — E)ip(—a)e
Take the limit as e — 0. .
aw| ",
dr|_, - N
It turns out that 0¥ /0x is continuous at x = —a as well.
@ _ dy

lim — = lim :
r——a— AT z——at dx

ik(Ae~*e — Bet*®) = ¢(—C'sinh fa + D cosh {a)
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Integrate both sides of the TISE with respect to « from a — € to a + € to determine one more

constant.
a+e dZw a+e€ 2m

dap |*F€ @ 2m ate o2m
= R pE s [ By de
2m @ 2mE ate
= - [ de- T [ s
2m(Vp — FE 2mE
= 200 2B e~ 2 (e
Take the limit as € — 0. N
awl” _,
dx |, N

0V /0z also happens to be continuous at z = a.

lim W _ lim W, ¢(C'sinh fa + D cosh la) = z’]-c(Fe“w - Ge_“m)

z—a— dx r—at dT

To summarize, there are four equations involving A, B, C, D, and F. G is set equal to zero.

Ae~ % 4 Bet*® — (' cosh fa — D sinh fa

C cosh fa + D sinh fa = Fe'*®

ik(Ae~** — Bet*®) = ¢(—C'sinh fa + D cosh (a)
¢(C'sinh fa + D cosh fa) = ik(Fe*®)

Solve the second and fourth equations for C' and D. To get C', multiply both sides of the second
by cosh fa and multiply both sides of the fourth by (sinh ¢a)/¢.

C cosh? fa + D sinh fa cosh fa = Fe**® cosh la

e
C'sinh? fa + D sinh fa cosh fa = %Fe”m sinh 4a

Subtract the respective sides to eliminate D.
) ik
C(cosh? fa — sinh? fa) = Fe'*® <cosh la — % sinh Ea)
Use the fact that cosh? fa — sinh? fa = 1.

C = Fe'ka (cosh la — % sinh m)

To get D, multiply both sides of the second by sinh £a and multiply both sides of the fourth by
(coshta)/t. ‘
C'sinh a cosh la + D sinh? fa = Fe**® sinh la

C'sinh fa cosh fa + D cosh? la = %Fe“m cosh la
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Subtract the respective sides to eliminate C'

A ik
D(cosh? fa — sinh? fa) = Fe'*® <Z€ cosh fa — sinh £a>

D = Fetke <Z€ cosh fa — sinh €a>
Substitute these formulas for C' and D into the first equation.

Ae~ ka4 Betke — (' cosh fa — D sinh fa

= Fetha (cosh la — % sinh Ea) cosh fa — Fet@ <z€ cosh fa — sinh Ea) sinh fa

, 2ik
= Fetke (cosh2 la — % sinh fa cosh fa + sinh? Ea,)

= Fetke (Cosh 20a — %sinh 2€a>

Substitute these formulas for C' and D into the third equation.

ik

7 (Ae~*e _ Beikay — _(C'sinh fa + D cosh fa

= — etk (cosh la — Z? sinh Za) sinh fa + Fet*® (Ze cosh fa — sinh Ea) cosh fa
. ik

= Fetha [2 sinh fa cosh fa + % (sinh? fa + cosh? m)}
ika : ik

= Fe — sinh 24a + 7 cosh 2¢a

Consequently, the first and third equations become
—ika ika ika ik :

Ae + Be'™® = Fe (cosh 20a — 7 sinh 2€a)
Ae~ka _ Betka — peika (COSh 20a — % sinh 2€a)

1

Subtract the respective sides to eliminate A.
2Bt = Feika <—Z€ sinh 20a + o sinh 2€a>
i

' 272 2
— Fetha <lkk£+€> sinh 24a
1

2 2
— [etka (k—]:f) sinh 24a

Solve for B.
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Add the respective sides to eliminate B.

2Ae tka — peika [2 cosh 24a — (Zf + zi:) sinh QEa}

212 2
2 cosh 20a — K kjl; ¢ sinh 26@)

1

)
L2 _ g2
2 cosh 20a — z

zka (
2 o EQ
= Fe'* (2 cosh 20a + sinh 2¢a
174
gtka < sinh 2€a>

Solve for F'. A
e—21kaA

cosh 20a — ikz;fg sinh 24a

The transmission coefficient can now be determined.

2 F F\* e—2ika e2ika
T = | — = —_ —_ =
‘ A <A> <A> cosh 20a — ;f sinh 2¢a | | cosh 24a + ikz;f sinh 2¢a
_ 1
B 2 (k2—¢2)2 2
cosh® 2la + =7 sinh” 2(a

Invert both sides and then plug in the formulas for k and £.

(27 2)2

-1 _ 2 .19
T~ = cosh” 20a + VTSI sinh” 2¢a
2a\/2m(Vo — E) =~ (Vo —2E)? . 5 2a\/2m(Vy — E)
= cosh? h
o8 h + A4E(Vo — E) St h
2a+/2m(Vo — E)  VZ —4EVy +4E? | 2a+/2m(Vy — E)
— h2 0 h2
o8 h + 4E(Vy — E) St h

L2 2a+/2m(Vo — E) Vi 2 2a/2m(Vo — E)  4EV, %sinhQ 2a+/2m(Vy — E)

- oo h TE - h 1BV, — E) h

Therefore, the transmission coefficient for the case that Vy — E > 0 is

Tl =1+ Ve . 22a\/2m(V0—E)‘

SI11.

E(Vy — E) h

Combine the formulas for B and F.

K2 42 —2ikaA B2 4 2 e~ 2ika g (’“2%2) sinh 2¢a
B=F < - ) sinh 2¢a = < - ) sinh 24a =
ikl cosh 20q — i*=-& 2 3 z ? sinh 2¢a 2ikl
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Now the reflection coefficient can be determined.

B2 B B\* ¢~ 2ika (%) sinh 24a g2ika (’“227%2) sinh 2¢a
R = | — = —_ —_ =
'A <A> <A> 7 cosh 20a + % sinh 2¢a —j cosh 24a + % sinh 2¢a
(kj,:;l;) ’ sinh? 2/a 7(k42,;i22)2 sinh? 2/a
cosh? 20a + % sinh? 2¢a !
V . 1.2 2a+/2m(Vo—E)
1B, —F) Sinh P 1

sinh? 20V2m(%=E) B SE0E) g 200D
0

V2
L+ mm=m
Therefore, the reflection coefficient for the case that Vo — F > 0 is

Rl A= B) o 20y/2m(Vo — B)

Vi h

Note that R+ T = 1. Below are plots of y = T'(F) (in blue) and y = R(FE) (in red) versus E for
m = h, a = Vh, and various magnitudes of V}.
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Case II: Vi — E=0

2y 2mlp

a2
s T v lel>a =0

de? 7
In this case, the general solution on —a < x < a is a straight line.
Aek* 1 Be~hT if r < —q
Y(x) =< Cx+ D if —a<z<a
Fetkr 4 Ge™ ™ if x> a

Here

V2mV)
P

Solving the ODE in ¢ yields ¢(t) = e *F*/" which means the product solution is a linear
combination of waves travelling to the left and to the right (on z < —a and = > a).

k=

Aeilkz—Et/h) | pe—ilkz+Et/h) if » « _

Y(x)p(t) = { Ce BNy 4 De—ibt/h if —a<z<a
Feilke—Bt/h) | qo—ilket B i 2 > 4

Assuming there’s a plane wave incident from the left, G = 0, and the reflection and transmission
coefficients are R = |B/A|?> and T = |F/A|?, respectively. Require the wave function [and
consequently 1(z)] to be continuous at x = —a and = = a to determine two of the constants.

lim ¢(z) = lim (z): Ae % 4+ Be** = —Ca+ D

T——a~ x——a™t
lim ¢(z) = lim (z): Ca+ D= Fe** 4 Ge
T—+a— z—>+a™t

Integrate both sides of the TISE with respect to « from —a — € to —a + €, where € is a really small
positive number, to determine one more constant.

—a+te d2 —a+e 2
l/ dﬁm:/ 2V (&) — Bli(a) do

—a—e€ —a—e€

dp |7 ¢ 2m —ate om
% . = /_a_e ﬁ(—Eylb(l‘) dx + la ?(‘/0 — E)w(fﬂ) dzx
2mVjy @
=gt [
2mVy
Take the limit as e — 0. .
aw|
dr|_,- N
It turns out that O¥/0x is continuous at x = —a as well.
lim W _ lim W, ik(Ae_ik“ — Beika) =C

z——a— dx z——at dT
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Integrate both sides of the TISE with respect to « from a — € to a + € to determine one more

constant.
a+te dZw a-+te 2m
/a€ T2 dx = /a — [V (z) — EJ¢(x) dx

dap |*F€ ¢ 2m ate€ om
T Fe-m@as [ R i@
2m‘/0 a+e€
=~ z/)(a)/a dx
2mVy
Take the limit as € — 0. N
| _,
dx |- a

0V /0z also happens to be continuous at z = a.

lim diw = lim % . C = ik(Feika . Ge*ika)

z—a— dT N z—at dx
To summarize, there are four equations involving A, B, C, D, and F. G is set equal to zero.
Ae~ % 4 Be'** — _Ca+ D
Ca+ D = Fe'*®
ik(Ae~* — Betht) = C
C = ik(Fe'*)
Solve the second and fourth equations for C' and D.
C = ikFe'*
D = Fe™*(1 — ika)
Substitute these results into the first and third equations.
Ae™™ 4 Be'*t* = Fe*(1 — 2ika)
Ae—ika _ Beika — Feika
Subtract the respective sides to get B.
2Bet* = Fetht(—2ika)
B = —ikaF
Add the respective sides to get A.
24e~ " = Fetkd(2 — ika)

B e—Zik’aA
1 —ika

F
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The transmission coefficient can now be found.

T =

1

‘ F

A

Therefore, the transmission coefficient for the case that Vy — E =0 is

h2
T
h2 + 2ma?Vj

Now combine the formulas for B and F'.
efQika A

1 —ika

B = —ikaF = —ika

The reflection coefficient is

2_<F> <F>*_<e—2ika><62ika>_ 1 B
A)\A 1—ika) \ 1+ ika 1+ k%a? 1+2mhL20aQ

2mVpa?

h2

B
r=|%

2 B B\* . e—2ika . e2ika k2q2
== — | = —ika - tka - = =
A A 1 —ika 1+ ika 1+ k2q2

Therefore, the reflection coefficient for the case that Vjp — E =0 is

B 2ma?Vy
R 4 2ma?Vy

R
1+ Qmi;goa

Note that R+ T = 1. Below are plots of y = T'(V) (in blue) and y = R(V}) (in red) versus V} for

m = h and a = VA.

}’
1.0

0.8

0.6

0.4+

0.2
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Case III: V) — E <0

d? 2mE
iz e ll>a

d* _ 2m

W——ﬁ(E—VOWJ; —a<r<a

In this case, the general solution on —a < x < a can be written in terms of sine and cosine.

Aethr 4 Be—ikz ifz < —a
Y(x) =< Cosinlx + Docosle if —a<x<a
Fethr 4 Geike ifz>a

Here

. _ Vo2mE | V/2m(E Vo)

W and 5

This scattering state was analyzed in Problem 2.32, so the same formulas for R and T in terms of
k and [ can be used. Plug in these new formulas for k and I.

T7! = cos? 2la + (k::;;llj)Q sin? 2la
= cos? 2la + iZ?E__VO{}OQ) sin? QG@
= cos? 2la + 4EZ;(2EY0V$ Ve sin? 2a\/2m](iE7—V0)
= cos? 2la + iEQ __ Vo;) sin? 2la + 4E(L"7/02— ) sin? 2a\/2m(E — Vo)

Therefore, the transmission coefficient for the case that Vy — E < 0 is

T W e aV2EmE Vo)

AE(E - Vo) I

(12 — k?)% sin® 2la

R=
4k212 T-1
VO2 .9 2a+/2m(E—-Vy)
_ IE(E—v) S h
V2 . 9 2a+/2m(E-Vy)
1+ 4E(E07V0) sin 5
_ 1
4E(€O;v0) s 2a«/2mh(E—V0) L1

Therefore, the reflection coefficient for the case that Vj — E < 0 is

R_1:1+4E(E_VO) 5 2a/2m(E — Vp)

CsC .

V7 i

Note that R+7 = 1.
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Below are plots of y = T'(E) (in blue) and y = R(E) (in red) versus E for m = h, a = v/h, and
various magnitudes of Vj.

y y vy=RE) y=T(E)
1.0 1.0
0.8 0.8
0.6 0.6
Vo = 0.01 Vo =0.1
0.4 0.4
0.2 0.2
E
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
¥ y
1.0 1.0
0.8 0.8
0.6 0.6
To=1 Vo =10
0.4 0.4
0.2 0.2
E
2 4 6 8 10 20 40 60 80 100

In conclusion, for a rectangular barrier,

AE(Vo— E 2a+/2 - F
1 M E) g 2av2mVo = B) gy
Vi h
K2 + 2ma?V
Ri==—"" if £ =1V
2ma?Vj ! 0
4E(E -V, 2a+/2m(E — V,
1+ ( 3 0)c502 ay/2m 0) if £ >V
( Vi h
Vi 2a+/2m(Vy — E)
1 0 inh? if £ <V
+4E(V0—E) sin » 1 < W
_ B2 + 2ma?V, .
T 1: TO le:‘/b
%5 2a+/2m(E — V)
1 0 in? if £ >V,
\ +4E(E—V0)Sm W 1 > W

www.stemjock.com



