Exercise 1.4.1

Determine the equilibrium temperature distribution for a one-dimensional rod with constant thermal properties with the following sources and boundary conditions:

(a) \(Q = 0, \quad u(0) = 0, \quad u(L) = T \)

(b) \(Q = 0, \quad u(0) = T, \quad u(L) = 0 \)

(c) \(Q = 0, \quad \frac{\partial u}{\partial x}(0) = 0, \quad u(L) = T \)

(d) \(Q = 0, \quad u(0) = T, \quad \frac{\partial u}{\partial x}(L) = \alpha \)

(e) \(\frac{Q}{K_0} = 1, \quad u(0) = T_1, \quad u(L) = T_2 \)

(f) \(\frac{Q}{K_0} = x^2, \quad u(0) = T, \quad \frac{\partial u}{\partial x}(L) = 0 \)

(g) \(Q = 0, \quad u(0) = T, \quad \frac{\partial u}{\partial x}(L) + u(L) = 0 \)

(h) \(Q = 0, \quad \frac{\partial u}{\partial x}(0) - [u(0) - T] = 0, \quad \frac{\partial u}{\partial x}(L) = \alpha \)

Solution

The heat equation for a one-dimensional rod with constant thermal properties, \(\rho, c, \) and \(K_0, \) and a heat source \(Q \) is

\[
\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2} + Q.
\]

Part (a)

With \(Q = 0 \) the PDE reduces to

\[
\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}.
\]

At equilibrium the temperature does not change in time, so \(\partial u/\partial t \) vanishes. \(u \) is only a function of \(x \) now.

\[0 = K_0 \frac{d^2 u}{dx^2} \rightarrow \frac{d^2 u}{dx^2} = 0\]

The general solution to this ODE is obtained by integrating both sides with respect to \(x \) twice.

\[\frac{du}{dx} = C_1\]

\[u(x) = C_1 x + C_2\]

Apply the boundary conditions here to determine \(C_1 \) and \(C_2.\)

\[u(0) = C_2 = 0\]

\[u(L) = C_1 L + C_2 = T\]

Solving the second equation for \(C_1 \) gives \(C_1 = T/L. \) Therefore, the equilibrium temperature distribution is

\[u(x) = \frac{T}{L} x.\]
Part (b)

With $Q = 0$ the PDE reduces to
\[\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}. \]

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

\[0 = K_0 \frac{d^2 u}{dx^2} \quad \rightarrow \quad \frac{d^2 u}{dx^2} = 0 \]

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

\[\frac{du}{dx} = C_1 \]

\[u(x) = C_1 x + C_2 \]

Apply the boundary conditions here to determine C_1 and C_2.

\[u(0) = C_2 = T \]
\[u(L) = C_1 L + C_2 = 0 \]

Solving the second equation for C_1 gives $C_1 = -T/L$. Therefore, the equilibrium temperature distribution is

\[u(x) = -\frac{T}{L} x + T \]
\[= \frac{T}{L} (L - x). \]

Part (c)

With $Q = 0$ the PDE reduces to
\[\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}. \]

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

\[0 = K_0 \frac{d^2 u}{dx^2} \quad \rightarrow \quad \frac{d^2 u}{dx^2} = 0 \]

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

\[\frac{du}{dx} = C_1 \]

Apply the first boundary condition here.

\[\frac{du}{dx}(0) = C_1 = 0 \]

So we have

\[\frac{du}{dx} = 0. \]

Integrate both sides once more.

\[u(x) = C_2 \]
Use the second boundary condition to determine C_2.

$$u(L) = C_2 = T$$

Therefore, the equilibrium temperature distribution is

$$u(x) = T.$$

Part (d)

With $Q = 0$ the PDE reduces to

$$\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}.$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$0 = K_0 \frac{d^2 u}{dx^2} \quad \rightarrow \quad \frac{d^2 u}{dx^2} = 0$$

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

$$\frac{du}{dx} = C_1$$

Apply the second boundary condition here.

$$\frac{du}{dx}(L) = C_1 = \alpha$$

So we have

$$\frac{du}{dx} = \alpha.$$

Integrate both sides once more.

$$u(x) = \alpha x + C_2$$

Use the first boundary condition to determine C_2.

$$u(0) = C_2 = T$$

Therefore, the equilibrium temperature distribution is

$$u(x) = \alpha x + T.$$

Part (e)

With $Q = K_0$ the PDE reduces to

$$\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2} + K_0.$$

At equilibrium the temperature does not change in time, so $\partial u / \partial t$ vanishes. u is only a function of x now.

$$0 = K_0 \frac{d^2 u}{dx^2} + K_0 \quad \rightarrow \quad \frac{d^2 u}{dx^2} = -1$$

www.stemjock.com
The general solution to this ODE is obtained by integrating both sides with respect to x twice.

\[
\frac{du}{dx} = -x + C_1
\]

\[
u(x) = -\frac{x^2}{2} + C_1 x + C_2
\]

Apply the boundary conditions here to determine C_1 and C_2.

\[
u(0) = C_2 = T_1
\]

\[
u(L) = -\frac{L^2}{2} + C_1 L + C_2 = T_2
\]

Solving the second equation for C_1 gives

\[
C_1 = \frac{T_2 - T_1}{L} + \frac{L}{2}.
\]

Therefore, the equilibrium temperature distribution is

\[
u(x) = -\frac{x^2}{2} + \left(\frac{T_2 - T_1}{L} + \frac{L}{2}\right) x + T_1.
\]

Part (f)

With $Q = K_0 x^2$ the PDE reduces to

\[
\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2} + K_0 x^2.
\]

At equilibrium the temperature does not change in time, so $\partial u/\partial t$ vanishes. u is only a function of x now.

\[
0 = K_0 \frac{d^2 u}{dx^2} + K_0 x^2 \quad \rightarrow \quad \frac{d^2 u}{dx^2} = -x^2
\]

The general solution to this ODE is obtained by integrating both sides with respect to x twice.

\[
\frac{du}{dx} = -\frac{x^3}{3} + C_1
\]

Apply the second boundary condition here.

\[
\frac{du}{dx}(L) = -\frac{L^3}{3} + C_1 = 0 \quad \rightarrow \quad C_1 = \frac{L^3}{3}
\]

So we have

\[
\frac{du}{dx} = -\frac{x^3}{3} + \frac{L^3}{3}.
\]

Integrate both sides once more.

\[
u(x) = -\frac{x^4}{12} + \frac{L^3}{3} x + C_2
\]

Use the first boundary condition to determine C_2.

\[
u(0) = C_2 = T
\]
Therefore, the equilibrium temperature distribution is

\[u(x) = -\frac{x^4}{12} + \frac{L^3}{3}x + T. \]

Part (g)

With \(Q = 0 \) the PDE reduces to

\[\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}. \]

At equilibrium the temperature does not change in time, so \(\partial u/\partial t \) vanishes. \(u \) is only a function of \(x \) now.

\[0 = K_0 \frac{d^2 u}{dx^2} \quad \rightarrow \quad \frac{d^2 u}{dx^2} = 0 \]

The general solution to this ODE is obtained by integrating both sides with respect to \(x \) twice.

\[du = C_1 \]

\[u(x) = C_1 x + C_2 \]

Apply the boundary conditions here to determine \(C_1 \) and \(C_2 \).

\[u(0) = C_2 = T \]

\[\frac{du}{dx}(L) + u(L) = C_1 + C_1 L + C_2 = 0 \]

Solving the second equation for \(C_1 \) gives

\[C_1 = -\frac{T}{1+L}. \]

Therefore, the equilibrium temperature distribution is

\[u(x) = -\frac{T}{1+L} x + T \]

\[= \frac{T}{L+1}(L+1-x). \]

Part (h)

With \(Q = 0 \) the PDE reduces to

\[\rho c \frac{\partial u}{\partial t} = K_0 \frac{\partial^2 u}{\partial x^2}. \]

At equilibrium the temperature does not change in time, so \(\partial u/\partial t \) vanishes. \(u \) is only a function of \(x \) now.

\[0 = K_0 \frac{d^2 u}{dx^2} \quad \rightarrow \quad \frac{d^2 u}{dx^2} = 0 \]

The general solution to this ODE is obtained by integrating both sides with respect to \(x \) twice.

\[du = C_1 \]

www.stemjock.com
Apply the second boundary condition here.

$$\frac{du}{dx}(L) = C_1 = \alpha$$

So we have

$$\frac{du}{dx} = \alpha.$$

Integrate both sides once more.

$$u(x) = \alpha x + C_2$$

Use the first boundary condition to determine \(C_2\).

$$\frac{du}{dx}(0) - [u(0) - T] = \alpha - [C_2 - T] = 0$$

Solving the equation gives \(C_2 = \alpha + T\). Therefore, the equilibrium temperature distribution is

$$u(x) = \alpha x + \alpha + T$$

$$= \alpha(x + 1) + T.$$