Exercise 1.5.14

Isobars are lines of constant temperature. Show that isobars are perpendicular to any part of the boundary that is insulated.

[TYPO: Isobars are lines of constant pressure. Isotherms are lines of constant temperature.]

Solution

Isotherms are constant solutions (also known as level surfaces) to the heat equation.

\[u(x, y, z, t) = u_0 \]

For fixed time, consider the differential of both sides.

\[du = 0 \]

For a function with three spatial variables, the differential can be written like so.

\[\frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz = 0 \]

Notice that the left side is a dot product of two vectors, \(\nabla u \) and \(\langle dx, dy, dz \rangle \). \(\langle dx, dy, dz \rangle \) represents an arbitrary vector in the plane of constant temperature \(u_0 \).

\[\nabla u \cdot \langle dx, dy, dz \rangle = 0 \]

Along an insulated boundary that has a unit normal vector \(n \), the temperature satisfies

\[\nabla u \cdot n = 0. \]

Comparing the previous two equations, we conclude that \(n \) lies in the plane of constant temperature. That is, any line of constant temperature will run perpendicular to an insulated boundary.

Figure 1: This is an illustration of an insulated one-dimensional rod. Any cross-section of the rod has a constant temperature, and all of the lines in this cross-section run perpendicular to the boundary (parallel to \(n \)).