Exercise 2.3.1

For the following partial differential equations, what ordinary differential equations are implied by the method of separation of variables?

(a) \[\frac{\partial u}{\partial t} = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right) \]

(b) \[\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - v_0 \frac{\partial u}{\partial x} \]

(c) \[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \]

(d) \[\frac{\partial u}{\partial t} = k \frac{\partial}{r^2} \left(r^2 \frac{\partial u}{\partial r} \right) \]

(e) \[\frac{\partial u}{\partial t} = k \frac{\partial^4 u}{\partial x^4} \]

(f) \[\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2} \]

Solution

Part (a)

The PDE in question here is

\[\frac{\partial u}{\partial t} = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right). \]

Assume a product solution of the form \(u(r,t) = R(r)T(t) \).

\[\frac{\partial}{\partial t} [R(r)T(t)] = \frac{k}{r} \frac{\partial}{\partial r} \left(r \frac{\partial [R(r)T(t)]}{\partial r} \right) \]

\[R(r)T'(t) = \frac{k}{r} \frac{\partial}{\partial r} \left[rR'(r)T(t) \right] \]

\[R(r)T'(t) = \frac{kT(t)}{r} \frac{d}{dr} \left[rR'(r) \right] \]

Now separate variables in the equation: divide both sides by \(kR(r)T(t) \) so that all constants and functions of \(t \) are on the left side and all functions of \(r \) are on the right side.

\[\frac{T'(t)}{kT(t)} = \frac{1}{rR(r)} \frac{d}{dr} \left[rR'(r) \right] \]

The only way a function of \(t \) can be equal to a function of \(r \) is if both are equal to a constant \(\lambda \).

\[\frac{T'(t)}{kT(t)} = \frac{1}{rR(r)} \frac{d}{dr} \left[rR'(r) \right] = \lambda \]

As a result of the method of separation of variables, the PDE has reduced to a system of ODEs, one in each independent variable.

\[\begin{cases} \frac{T'(t)}{kT(t)} = \lambda \\ \frac{1}{rR(r)} \frac{d}{dr} \left[rR'(r) \right] = \lambda \end{cases} \]
Part (b)

The PDE in question here is
\[\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} - v_0 \frac{\partial u}{\partial x}. \]

Assume a product solution of the form \(u(x, t) = X(x)T(t) \).

\[\frac{\partial}{\partial t} [X(x)T(t)] = k \frac{\partial^2}{\partial x^2} [X(x)T(t)] - v_0 \frac{\partial}{\partial x} [X(x)T(t)] \]
\[X(x)T'(t) = kX''(x)T(t) - v_0 X'(x)T(t) \]

Now separate variables in the equation: divide both sides by \(X(x)T(t) \) so that all functions of \(t \) are on the left side and all constants and functions of \(x \) are on the right side.
\[\frac{T'(t)}{T(t)} = \frac{kX''(x) - v_0 X'(x)}{X(x)} \]

The only way a function of \(t \) can be equal to a function of \(x \) is if both are equal to a constant \(\lambda \).
\[\frac{T'(t)}{T(t)} = \frac{kX''(x) - v_0 X'(x)}{X(x)} = \lambda \]

As a result of the method of separation of variables, the PDE has reduced to a system of ODEs, one in each independent variable.
\[\begin{align*}
 \frac{T'(t)}{T(t)} &= \lambda \\
 \frac{kX''(x) - v_0 X'(x)}{X(x)} &= \lambda
\end{align*} \]

Part (c)

The PDE in question here is
\[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. \]

Assume a product solution of the form \(u(x, t) = X(x)Y(y) \).

\[\frac{\partial^2}{\partial x^2} [X(x)Y(y)] + \frac{\partial^2}{\partial y^2} [X(x)Y(y)] = 0 \]
\[X''(x)Y(y) + X(x)Y''(y) = 0 \]

Divide both sides by \(X(x)Y(y) \).
\[\frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = 0 \]

Now separate variables in the equation: bring \(Y''/Y \) to the right side. Note that it doesn’t matter which side the minus sign is placed on—the final answer for \(u \) will be the same either way.
\[\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} \]
The only way a function of \(x \) can be equal to a function of \(y \) is if both are equal to a constant \(\lambda \).

\[
\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \lambda
\]

As a result of the method of separation of variables, the PDE has reduced to a system of ODEs, one in each independent variable.

\[
\begin{aligned}
\frac{X''(x)}{X(x)} &= \lambda \\
\frac{Y''(y)}{Y(y)} &= \lambda
\end{aligned}
\]

Part (d)

The PDE in question here is

\[
\frac{\partial u}{\partial t} = k \frac{\partial}{\partial r} \left(r^2 \frac{\partial u}{\partial r} \right).
\]

Assume a product solution of the form \(u(r,t) = R(r)T(t) \).

\[
\frac{\partial}{\partial t} [R(r)T(t)] = k \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} [R(r)T(t)] \right)
\]

\[
R(r)T'(t) = k \frac{\partial}{\partial r} [r^2 R(r)T(t)]
\]

\[
R(r)T'(t) = \frac{kT'(t)}{r^2} \frac{d}{dr} [r^2 R'(r)]
\]

Now separate variables in the equation: divide both sides by \(kR(r)\) \(T(t) \) so that all constants and functions of \(t \) are on the left side and all functions of \(r \) are on the right side.

\[
\frac{T'(t)}{kT(t)} = \frac{1}{r^2 R(r)} \frac{d}{dr} [r^2 R'(r)]
\]

The only way a function of \(t \) can be equal to a function of \(r \) is if both are equal to a constant \(\lambda \).

\[
\frac{T'(t)}{kT(t)} = \lambda \]

\[
\frac{1}{r^2 R(r)} \frac{d}{dr} [r^2 R'(r)] = \lambda
\]

As a result of the method of separation of variables, the PDE has reduced to a system of ODEs, one in each independent variable.

\[
\begin{aligned}
\frac{T'(t)}{kT(t)} &= \lambda \\
\frac{1}{r^2 R(r)} \frac{d}{dr} [r^2 R'(r)] &= \lambda
\end{aligned}
\]
Part (e)

The PDE in question here is

$$\frac{\partial u}{\partial t} = k \frac{\partial^4 u}{\partial x^4}$$

Assume a product solution of the form \(u(x,t) = X(x)T(t) \).

$$\frac{\partial}{\partial t} [X(x)T(t)] = k \frac{\partial^4}{\partial x^4} [X(x)T(t)]$$

$$X(x)T'(t) = kX^{''''}(x)T(t)$$

Now separate variables in the equation: divide both sides by \(kX(x)T(t) \) so that all constants and functions of \(t \) are on the left side and all functions of \(x \) are on the right side.

$$\frac{T'(t)}{kT(t)} = \frac{X^{'''}(x)}{X(x)}$$

The only way a function of \(t \) can be equal to a function of \(x \) is if both are equal to a constant \(\lambda \).

$$\frac{T'(t)}{kT(t)} = \frac{X^{'''}(x)}{X(x)} = \lambda$$

As a result of the method of separation of variables, the PDE has reduced to a system of ODEs, one in each independent variable.

$$\begin{cases}
\frac{T'(t)}{kT(t)} = \lambda \\
\frac{X^{'''}(x)}{X(x)} = \lambda
\end{cases}$$

Part (f)

The PDE in question here is

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

Assume a product solution of the form \(u(x,t) = X(x)T(t) \).

$$\frac{\partial^2}{\partial t^2} [X(x)T(t)] = c^2 \frac{\partial^2}{\partial x^2} [X(x)T(t)]$$

$$X(x)T''(t) = c^2 X''(x)T(t)$$

Now separate variables in the equation: divide both sides by \(c^2X(x)T(t) \) so that all constants and functions of \(t \) are on the left side and all functions of \(x \) are on the right side.

$$\frac{T''(t)}{c^2T(t)} = \frac{X''(x)}{X(x)}$$

The only way a function of \(t \) can be equal to a function of \(x \) is if both are equal to a constant \(\lambda \).

$$\frac{T''(t)}{c^2T(t)} = \frac{X''(x)}{X(x)} = \lambda$$
As a result of the method of separation of variables, the PDE has reduced to a system of ODEs, one in each independent variable.

\[
\begin{align*}
\frac{T''(t)}{c^2 T(t)} &= \lambda \\
\frac{X''(x)}{X(x)} &= \lambda
\end{align*}
\]