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Exercise 2.3.11

Solve the heat equation
∂u

∂t
= k

∂2u

∂x2

subject to the following conditions:

u(0, t) = 0 u(L, t) = 0 u(x, 0) = f(x).

What happens as t→∞? [Hints:

1. It is known that if u(x, t) = φ(x)G(t), then
1

kG

dG

dt
=

1

φ

d2φ

dx2
.

2. Use formula sheet.]

Solution

The heat equation and its associated boundary conditions are linear and homogeneous, so the
method of separation of variables can be applied. Assume a product solution of the form
u(x, t) = X(x)T (t) and substitute it into the PDE

∂u

∂t
= k

∂2u

∂x2
→ ∂

∂t
[X(x)T (t)] = k

∂2

∂x2
[X(x)T (t)]

and the boundary conditions.

u(0, t) = 0 → X(0)T (t) = 0 → X(0) = 0

u(L, t) = 0 → X(L)T (t) = 0 → X(L) = 0

Now separate variables in the PDE.

X
dT

dt
= kT

d2X

dx2

Divide both sides by kX(x)T (t). (Note that the final answer for u will be the same regardless
which side k is on. Normally constants are grouped with t.)

1

kT

dT

dt︸ ︷︷ ︸
function of t

=
1

X

d2X

dx2︸ ︷︷ ︸
function of x

The only way a function of t can be equal to a function of x is if both are equal to a constant λ.

1

kT

dT

dt
=

1

X

d2X

dx2
= λ

As a result of applying the method of separation of variables, the PDE has reduced to two
ODEs—one in x and one in t.

1

kT

dT

dt
= λ

1

X

d2X

dx2
= λ


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Values of λ that result in nontrivial solutions for X and T are called the eigenvalues, and the
solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: λ = α2.
The ODE for X becomes

d2X

dx2
= α2X.

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshαx+ C2 sinhαx

Apply the boundary conditions now to determine C1 and C2.

X(0) = C1 = 0

X(L) = C1 coshαL+ C2 sinhαL = 0

The second equation reduces to C2 sinhαL = 0. Because hyperbolic sine is not oscillatory, C2

must be zero for the equation to be satisfied. This results in the trivial solution X(x) = 0, which
means there are no positive eigenvalues. Suppose secondly that λ is zero: λ = 0. The ODE for X
becomes

d2X

dx2
= 0.

The general solution is obtained by integrating both sides with respect to x twice.

X(x) = C3x+ C4

Apply the boundary conditions now to determine C3 and C4.

X(0) = C4 = 0

X(L) = C3L+ C4 = 0

The second equation reduces to C3 = 0. This results in the trivial solution X(x) = 0, which means
zero is not an eigenvalue. Suppose thirdly that λ is negative: λ = −β2. The ODE for X becomes

d2X

dx2
= −β2X.

The general solution is written in terms of sine and cosine.

X(x) = C5 cosβx+ C6 sinβx

Apply the boundary conditions now to determine C5 and C6.

X(0) = C5 = 0

X(L) = C5 cosβL+ C6 sinβL = 0

The second equation reduces to C6 sinβL = 0. To avoid the trivial solution, we insist that C6 6= 0.
Then

sinβL = 0

βL = nπ, n = 1, 2, . . .

βn =
nπ

L
.
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There are negative eigenvalues λ = −n2π2/L2, and the eigenfunctions associated with them are

X(x) = C5 cosβx+ C6 sinβx

= C6 sinβx → Xn(x) = sin
nπx

L
.

n only takes on the values it does because negative integers result in redundant values for λ. With
this formula for λ, the ODE for T becomes

1

kT

dT

dt
= −n

2π2

L2
.

Multiply both sides by kT .
dT

dt
= −kn

2π2

L2
T

The general solution is written in terms of the exponential function.

T (t) = C7 exp

(
−kn

2π2

L2
t

)
→ Tn(t) = exp

(
−kn

2π2

L2
t

)
According to the principle of superposition, the general solution to the PDE for u is a linear
combination of Xn(x)Tn(t) for each of the eigenvalues.

u(x, t) =

∞∑
n=1

Bn exp

(
−kn

2π2

L2
t

)
sin

nπx

L

Apply the initial condition u(x, 0) = f(x) now to determine Bn.

u(x, 0) =
∞∑
n=1

Bn sin
nπx

L
= f(x)

Multiply both sides by sin(mπx/L), where m is a positive integer.

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
= f(x) sin

mπx

L

Integrate both sides with respect to x from 0 to L.

ˆ L

0

∞∑
n=1

Bn sin
nπx

L
sin

mπx

L
dx =

ˆ L

0
f(x) sin

mπx

L
dx

Bring the constants in front.

∞∑
n=1

Bn

ˆ L

0
sin

nπx

L
sin

mπx

L
dx =

ˆ L

0
f(x) sin

mπx

L
dx

Because the sine functions are orthogonal, the integral on the left is zero if n 6= m. As a result,
every term in the infinite series vanishes except for the one where n = m.

Bn

ˆ L

0
sin2

nπx

L
dx =

ˆ L

0
f(x) sin

nπx

L
dx

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.3 - Exercise 2.3.11 Page 4 of 4

Evaluate the integral on the left.

Bn

(
L

2

)
=

ˆ L

0
f(x) sin

nπx

L
dx

So then

Bn =
2

L

ˆ L

0
f(x) sin

nπx

L
dx.

Because of the decaying exponential function, u falls to zero as t→∞.

lim
t→∞

u(x, t) = lim
t→∞

∞∑
n=1

Bn exp

(
−kn

2π2

L2
t

)
sin

nπx

L

= 0
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