Exercise 2.4.5

This problem presents an alternative derivation of the heat equation for a thin wire. The equation for a circular wire of finite thickness is the two-dimensional heat equation (in polar coordinates). Show that this reduces to (2.4.25) if the temperature does not depend on \(r \) and if the wire is very thin.

Solution

The two-dimensional heat equation in polar coordinates is

\[
\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right).
\]

If the temperature \(u \) does not depend on \(r \), then the radial derivative vanishes.

\[
\frac{\partial u}{\partial t} = k \left(\frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} \right)
\]

For a very thin wire that is bent into a circle with radius \(R \), \(r = R \).

\[
\frac{\partial u}{\partial t} = k \left(\frac{1}{R^2} \frac{\partial^2 u}{\partial \theta^2} \right)
\]

\[
= k \left(\frac{\partial^2 u}{\partial (R\theta)^2} \right)
\]

Letting \(x = R\theta \) represent the arc length, we obtain equation (2.4.25) in the text.

\[
\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}
\]

(2.4.25)