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Exercise 2.5.9

Solve Laplace’s equation inside a 90° sector of a circular annulus (a < r < b, 0 < θ < π/2) subject
to the boundary conditions [Hint : In polar coordinates,

∇2u =
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0,

it is known that if u(r, θ) = φ(θ)G(r), then r
G
d
dr

(
r dGdr

)
= − 1

φ
d2φ
dθ2

.]:

(a) u(r, 0) = 0, u(r, π/2) = 0, u(a, θ) = 0, u(b, θ) = f(θ)

(b) u(r, 0) = 0, u(r, π/2) = f(r), u(a, θ) = 0, u(b, θ) = 0

Solution

Because the Laplace equation is linear and homogeneous, the method of separation of variables
can be applied to solve it. Assume a product solution of the form u(r, θ) = R(r)Θ(θ) and plug it
into the PDE.

1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2
∂2u

∂θ2
= 0

1

r

∂

∂r

[
r
∂

∂r
R(r)Θ(θ)

]
+

1

r2
∂2

∂θ2
R(r)Θ(θ) = 0

Θ(θ)

r

d

dr

(
r
dR

dr

)
+
R(r)

r2
d2Θ

dθ2
= 0

Multiply both sides by r2/[R(r)Θ(θ)] in order to separate variables.

r

R(r)

d

dr

(
r
dR

dr

)
+

1

Θ(θ)

d2Θ

dθ2
= 0

r

R(r)

d

dr

(
r
dR

dr

)
= − 1

Θ(θ)

d2Θ

dθ2

The only way a function of r can be equal to a function of θ is if both are equal to a constant λ.

r

R(r)

d

dr

(
r
dR

dr

)
= − 1

Θ(θ)

d2Θ

dθ2
= λ

As a result of separating variables, the PDE has reduced to two ODEs—one in each independent
variable.

r

R

d

dr

(
r
dR

dr

)
= λ

− 1

Θ

d2Θ

dθ2
= λ


Values of λ for which nontrivial solutions to these ODEs and the associated boundary conditions
exist are called eigenvalues, and the solutions themselves are called eigenfunctions. Note that it
doesn’t matter whether the minus sign is grouped with r or θ as long as all eigenvalues are taken
into account.
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Part (a)

Substitute the product solution into the homogeneous boundary conditions.

u(r, 0) = 0 → R(r)Θ(0) = 0 → Θ(0) = 0

u
(
r,
π

2

)
= 0 → R(r)Θ

(π
2

)
= 0 → Θ

(π
2

)
= 0

u(a, θ) = 0 → R(a)Θ(θ) = 0 → R(a) = 0

Solve the ODE for Θ.
Θ′′ = −λΘ

Check for positive eigenvalues: λ = µ2.

Θ′′ = −µ2Θ

The general solution can be written in terms of sine and cosine.

Θ(θ) = C1 cosµθ + C2 sinµθ

Apply the boundary conditions to determine C1 and C2.

Θ(0) = C1 = 0

Θ
(π

2

)
= C1 cosµ

π

2
+ C2 sinµ

π

2
= 0

The second equation reduces to C2 sinµπ2 = 0. To avoid the trivial solution, we insist that C2 6= 0.

sinµ
π

2
= 0

µ
π

2
= nπ, n = 1, 2, . . .

µ = 2n

There are positive eigenvalues λ = (2n)2, and the eigenfunctions associated with them are

Θ(θ) = C2 sinµθ → Θn(θ) = sin 2nθ.

Note that this is only for positive integers because n = 0 would lead to λ = 0, and negative
integers would lead to redundant values for λ. With λ = 4n2, solve the ODE for R now.

r

R

d

dr

(
r
dR

dr

)
= 4n2

Expand the left side.
r

R
(R′ + rR′′) = 4n2

Multiply both sides by R and bring all terms to the left side.

r2R′′ + rR′ − 4n2R = 0

This is an equidimensional ODE, so it has solutions of the form R(r) = rm.

R = rm → R′ = mrm−1 → R′′ = m(m− 1)rm−2
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Substitute these formulas into the ODE and solve the resulting equation for m.

r2m(m− 1)rm−2 + rmrm−1 − 4n2rm = 0

m(m− 1)rm +mrm − 4n2rm = 0

m(m− 1) +m− 4n2 = 0

m2 − 4n2 = 0

(m+ 2n)(m− 2n) = 0

m = {−2n, 2n}

Two solutions to the ODE are R = r−2n and R = r2n. By the principle of superposition, the
general solution for R is a linear combination of these two.

R(r) = Ar−2n +Br2n

Apply the boundary condition at r = a to determine one of the constants.

R(a) = Aa−2n +Ba2n = 0 → A = −Ba4n

This makes the R-eigenfunction

R(r) = −Ba4nr−2n +Br2n

= Ba2n
(
−a

2n

r2n
+
r2n

a2n

)
→ Rn(r) =

r2n

a2n
− a2n

r2n
.

Check to see if zero is an eigenvalue: λ = 0.

Θ′′ = 0

The general solution is a straight line.

Θ(θ) = C3θ + C4

Apply the boundary conditions to determine C3 and C4.

Θ(0) = C4 = 0

Θ
(π

2

)
= C3

π

2
+ C4 = 0

With C4 = 0, the second equation reduces to C3
π
2 = 0, which means C3 = 0.

Θ(θ) = 0

The trivial solution is obtained, so zero is not an eigenvalue. Check to see if there are negative
eigenvalues: λ = −γ2.

Θ′′ = γ2Θ

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Θ(θ) = C5 cosh γθ + C6 sinh γθ
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Apply the boundary conditions to determine C5 and C6.

Θ(0) = C5 = 0

Θ
(π

2

)
= C5 cosh γ

π

2
+ C6 sinh γ

π

2
= 0

With C5 = 0, the second equation reduces to C6 sinh γ π2 = 0. No nonzero value of γ can satisfy
this equation, so C6 = 0.

Θ(θ) = 0

The trivial solution is obtained, so there are no negative eigenvalues. According to the principle
of superposition, the general solution to the PDE is a linear combination of the eigenfunctions
over all the eigenvalues.

u(r, θ) =

∞∑
n=1

Bn

(
r2n

a2n
− a2n

r2n

)
sin 2nθ

Use the boundary condition at r = b to determine the coefficients Bn.

u(b, θ) =

∞∑
n=1

Bn

(
b2n

a2n
− a2n

b2n

)
sin 2nθ = f(θ)

Multiply both sides by sin 2pθ, where p is an integer.

∞∑
n=1

Bn

(
b2n

a2n
− a2n

b2n

)
sin 2nθ sin 2pθ = f(θ) sin 2pθ

Integrate both sides with respect to θ from 0 to π/2.

ˆ π/2

0

[ ∞∑
n=1

Bn

(
b2n

a2n
− a2n

b2n

)
sin 2nθ sin 2pθ

]
dθ =

ˆ π/2

0
f(θ) sin 2pθ dθ

Split up the integral on the left and bring the constants in front.

∞∑
n=1

Bn

(
b2n

a2n
− a2n

b2n

)ˆ π/2

0
sin 2nθ sin 2pθ dθ =

ˆ π/2

0
f(θ) sin 2pθ dθ

Because the sine functions are orthogonal, this integral on the left is zero if n 6= p. Only if n = p
does the integral yield a nonzero result.

Bn

(
b2n

a2n
− a2n

b2n

) ˆ π/2

0
sin2 2nθ dθ =

ˆ π/2

0
f(θ) sin 2nθ dθ

Evaluate the integral.

Bn

(
b4n − a4n

a2nb2n

)(π
4

)
=

ˆ π/2

0
f(θ) sin 2nθ dθ

Therefore,

Bn =
4a2nb2n

π(b4n − a4n)

ˆ π/2

0
f(θ) sin 2nθ dθ.
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Part (b)

Substitute the product solution into the homogeneous boundary conditions.

u(r, 0) = 0 → R(r)Θ(0) = 0 → Θ(0) = 0

u(a, θ) = 0 → R(a)Θ(θ) = 0 → R(a) = 0

u(b, θ) = 0 → R(b)Θ(θ) = 0 → R(b) = 0

Solve the ODE for R.
r

R

d

dr

(
r
dR

dr

)
= λ

Check to see if zero is an eigenvalue: λ = 0.

r

R

d

dr

(
r
dR

dr

)
= 0

Multiply both sides by R/r.
d

dr

(
r
dR

dr

)
= 0

Integrate both sides with respect to r.

r
dR

dr
= C1

Divide both sides by r.
dR

dr
=
C1

r

Integrate both sides with respect to r once more.

R(r) = C1 ln r + C2

Apply the boundary conditions to determine C1 and C2.

R(a) = C1 ln a+ C2 = 0

R(b) = C1 ln b+ C2 = 0

Solving this system of equations yields C1 = 0 and C2 = 0.

R(r) = 0

The trivial solution is obtained, so zero is not an eigenvalue. Suppose now that λ 6= 0.

r

R

d

dr

(
r
dR

dr

)
= λ

Expand the left side.
r

R
(R′ + rR′′) = λ

Multiply both sides by R and bring all terms to the left side.

r2R′′ + rR′ − λR = 0

www.stemjock.com



Haberman Applied PDEs 5e: Section 2.5 - Exercise 2.5.9 Page 6 of 8

This is an equidimensional ODE, so its solutions are of the form R(r) = rm.

R = rm → R′ = mrm−1 → R′′ = m(m− 1)rm−2

Substitute these formulas into the ODE and solve the resulting equation for m.

r2m(m− 1)rm−2 + rmrm−1 − λrm = 0

m(m− 1)rm +mrm − λrm = 0

m(m− 1) +m− λ = 0

m2 − λ = 0

m = {±
√
λ}

Check for positive eigenvalues: λ = µ2.
m = {±µ}

Then two solutions to the ODE for R are R = r−µ and R = rµ. By the principle of superposition,
the general solution is a linear combination of these two.

R(r) = C3r
−µ + C4r

µ

Apply the boundary conditions to determine C3 and C4.

R(a) = C3a
−µ + C4a

µ = 0

R(b) = C3b
−µ + C4b

µ = 0

No value of µ can satisfy these equations, so C3 = 0 and C4 = 0.

R(r) = 0

The trivial solution is obtained, so there are no positive eigenvalues. Check for negative
eigenvalues: λ = −γ2.

m = {±iγ}

Then two solutions to the ODE for R are R = r−iγ and R = riγ . By the principle of
superposition, the general solution is a linear combination of these two.

R(r) = C5r
−iγ + C6r

iγ

= C5e
ln r−iγ + C6e

ln riγ

= C5e
−iγ ln r + C6e

iγ ln r

= C5[cos(γ ln r)− i sin(γ ln r)] + C6[cos(γ ln r) + i sin(γ ln r)]

= (C5 + C6) cos(γ ln r) + (−iC5 + iC6) sin(γ ln r)

= C7 cos(γ ln r) + C8 sin(γ ln r)

Apply the boundary conditions to determine C7 and C8.

R(a) = C7 cos(γ ln a) + C8 sin(γ ln a) = 0

R(b) = C7 cos(γ ln b) + C8 sin(γ ln b) = 0
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Solve this first equation for C7

C7 = −C8
sin(γ ln a)

cos(γ ln a)

and substitute it into the second equation.[
−C8

sin(γ ln a)

cos(γ ln a)

]
cos(γ ln b) + C8 sin(γ ln b) = 0

Assume that C8 6= 0 and divide both sides by C8.

− sin(γ ln a)

cos(γ ln a)
cos(γ ln b) + sin(γ ln b) = 0

Multiply both sides by cos(γ ln a).

sin(γ ln b) cos(γ ln a)− sin(γ ln a) cos(γ ln b) = 0

sin(γ ln b− γ ln a) = 0

sin

(
γ ln

b

a

)
= 0

γ ln
b

a
= nπ, n = 1, 2, . . .

γ =
nπ

ln b
a

There are negative eigenvalues λ = −
(

nπ
ln b
a

)2

, and the eigenfunctions associated with them are

R(r) = C7 cos(γ ln r) + C8 sin(γ ln r)

=

[
−C8

sin(γ ln a)

cos(γ ln a)

]
cos(γ ln r) + C8 sin(γ ln r)

=
C8

cos(γ ln a)
[sin(γ ln r) cos(γ ln a)− sin(γ ln a) cos(γ ln r)]

=
C8

cos(γ ln a)
sin(γ ln r − γ ln a)

=
C8

cos(γ ln a)
sin
(
γ ln

r

a

)
→ Rn(r) = sin

(
nπ

ln b
a

ln
r

a

)
.

With λ = −
(

nπ
ln b
a

)2

, solve the ODE for Θ.

Θ′′ =

(
nπ

ln b
a

)2

Θ

The general solution can be written in terms of hyperbolic sine and hyperbolic cosine.

Θ(θ) = C9 cosh

(
nπ

ln b
a

θ

)
+ C10 sinh

(
nπ

ln b
a

θ

)
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Use the boundary condition Θ(0) = 0 to determine one of the constants.

Θ(0) = C9 = 0

The Θ-eigenfunction is then

Θ(θ) = C10 sinh

(
nπ

ln b
a

θ

)
.

According to the principle of superposition, the general solution to the PDE is a linear
combination of the eigenfunctions Rn(r)Θn(θ) over all the eigenvalues.

u(r, θ) =

∞∑
n=1

An sinh

(
nπ

ln b
a

θ

)
sin

(
nπ

ln b
a

ln
r

a

)

Apply the final boundary condition to determine the coefficients An.

u
(
r,
π

2

)
=
∞∑
n=1

An sinh

(
nπ

ln b
a

π

2

)
sin

(
nπ

ln b
a

ln
r

a

)
= f(r)

Multiply both sides by 1
r sin

(
pπ

ln b
a

ln r
a

)
. This 1/r factor is included to account for the logarithm

in the sine’s argument.

∞∑
n=1

An sinh

(
nπ2

2 ln b
a

)
1

r
sin

(
nπ

ln b
a

ln
r

a

)
sin

(
pπ

ln b
a

ln
r

a

)
=
f(r)

r
sin

(
pπ

ln b
a

ln
r

a

)
Integrate both sides with respect to r from a to b.

ˆ b

a

[ ∞∑
n=1

An sinh

(
nπ2

2 ln b
a

)
1

r
sin

(
nπ

ln b
a

ln
r

a

)
sin

(
pπ

ln b
a

ln
r

a

)]
dr =

ˆ b

a

f(r)

r
sin

(
pπ

ln b
a

ln
r

a

)
dr

Split up the integrals and bring the constants in front.

∞∑
n=1

An sinh

(
nπ2

2 ln b
a

)ˆ b

a

1

r
sin

(
nπ

ln b
a

ln
r

a

)
sin

(
pπ

ln b
a

ln
r

a

)
dr =

ˆ b

a

f(r)

r
sin

(
pπ

ln b
a

ln
r

a

)
dr

Because the sine functions are orthogonal, this integral on the left is zero if n 6= p. Only if n = p
does the integral yield a nonzero result.

An sinh

(
nπ2

2 ln b
a

)ˆ b

a

1

r
sin2

(
nπ

ln b
a

ln
r

a

)
dr =

ˆ b

a

f(r)

r
sin

(
nπ

ln b
a

ln
r

a

)
dr

Evaluate the integral.

An sinh

(
nπ2

2 ln b
a

)(
1

2
ln
b

a

)
=

ˆ b

a

f(r)

r
sin

(
nπ

ln b
a

ln
r

a

)
dr

Therefore,

An =
2

sinh

(
nπ2

2 ln b
a

)
ln b

a

ˆ b

a

f(r)

r
sin

(
nπ

ln b
a

ln
r

a

)
dr.
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