Exercise 3.4.5

Using (3.3.13) determine the Fourier cosine series of \(\sin \frac{\pi x}{L} \).

Solution

Because \(\sin \frac{\pi x}{L} \) is a continuous function (assumed to be defined on \(0 \leq x \leq L \)), it has a Fourier cosine series.

\[
\sin \frac{\pi x}{L} = A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L}
\]

This series on the right is the \(2L \)-periodic even extension of \(\sin \frac{\pi x}{L} \) to the whole line. To determine \(A_0 \), integrate both sides with respect to \(x \) from 0 to \(L \).

\[
\int_0^L \sin \frac{\pi x}{L} \, dx = \int_0^L \left(A_0 + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} \right) \, dx
\]

Split up the integral on the right and bring the constants in front.

\[
\int_0^L \sin \frac{\pi x}{L} \, dx = A_0 \int_0^L \cos \frac{p\pi x}{L} \, dx + \sum_{n=1}^{\infty} A_n \int_0^L \cos \frac{n\pi x}{L} \cos \frac{p\pi x}{L} \, dx
\]

Evaluate the integrals.

\[
\frac{2L}{\pi} = A_0(L)
\]

Solve for \(A_0 \).

\[
A_0 = \frac{2}{\pi}
\]

To determine \(A_n \), multiply both sides of equation (1) by \(\cos \frac{p\pi x}{L} \), where \(p \) is an integer,

\[
\sin \frac{\pi x}{L} \cos \frac{p\pi x}{L} = A_0 \cos \frac{p\pi x}{L} + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} \cos \frac{p\pi x}{L}
\]

and then integrate both sides with respect to \(x \) from 0 to \(L \).

\[
\int_0^L \sin \frac{\pi x}{L} \cos \frac{p\pi x}{L} \, dx = \int_0^L \left(A_0 \cos \frac{p\pi x}{L} + \sum_{n=1}^{\infty} A_n \cos \frac{n\pi x}{L} \cos \frac{p\pi x}{L} \right) \, dx
\]

Split up the integral on the right and bring the constants in front.

\[
\int_0^L \sin \frac{\pi x}{L} \cos \frac{p\pi x}{L} \, dx = A_0 \int_0^L \cos \frac{p\pi x}{L} \, dx + \sum_{n=1}^{\infty} A_n \int_0^L \cos \frac{n\pi x}{L} \cos \frac{p\pi x}{L} \, dx \]

Because the cosine functions are orthogonal, this second integral on the right is zero if \(n \neq p \). Only if \(n = p \) does it yield a nonzero value.

\[
\int_0^L \sin \frac{\pi x}{L} \cos \frac{n\pi x}{L} \, dx = A_n \int_0^L \cos^2 \frac{n\pi x}{L} \, dx = A_n \left(\frac{L}{2} \right)
\]
Solve for A_n.

\[
A_n = \frac{2}{L} \int_0^L \sin \frac{\pi x}{L} \cos \frac{n\pi x}{L} \, dx
\]

\[
= \frac{2}{L} \int_0^L \frac{1}{2} \left[\sin \left(\frac{\pi x}{L} + \frac{n\pi x}{L} \right) + \sin \left(\frac{\pi x}{L} - \frac{n\pi x}{L} \right) \right] \, dx
\]

\[
= \frac{1}{L} \left[\int_0^L \sin \frac{(1+n)\pi x}{L} \, dx + \int_0^L \sin \frac{(1-n)\pi x}{L} \, dx \right] = 0 \text{ if } n = 1
\]

\[
= \frac{1}{L} \left[\frac{L[1 + (-1)^n]}{(1+n)\pi} + \frac{L[1 + (-1)^n]}{(1-n)\pi} \right] \text{ if } n \neq 1
\]

\[
= \frac{2[1 + (-1)^n]}{(1 - n^2)\pi}
\]

\[
= -\frac{2[1 + (-1)^n]}{(n^2 - 1)\pi}
\]

\[
= \begin{cases}
0 & n = 1 \\
-\frac{2[1 + (-1)^n]}{(n^2 - 1)\pi} & n \neq 1
\end{cases}
\]

As a result, the Fourier cosine series expansion of $\sin \frac{\pi x}{L}$ is

\[
\sin \frac{\pi x}{L} = \frac{2}{\pi} + \sum_{n=2}^{\infty} \left\{ -\frac{2[1 + (-1)^n]}{(n^2 - 1)\pi} \right\} \cos \frac{n\pi x}{L}
\]

\[
= \frac{2}{\pi} - \frac{2}{\pi} \sum_{n=2}^{\infty} \frac{1 + (-1)^n}{n^2 - 1} \cos \frac{n\pi x}{L}.
\]

Notice that the summand vanishes if n is odd. The infinite series can then be simplified (that is, made to converge faster) by summing over the even integers only. Substitute $n = 2k$ in the series.

\[
\sin \frac{\pi x}{L} = \frac{2}{\pi} - \frac{2}{\pi} \sum_{k=2}^{\infty} \frac{1 + (-1)^k}{(2k)^2 - 1} \cos \frac{2k\pi x}{L}
\]

\[
= \frac{2}{\pi} - \frac{2}{\pi} \sum_{k=1}^{\infty} \frac{2}{4k^2 - 1} \cos \frac{2k\pi x}{L}
\]

\[
= \frac{2}{\pi} \left(1 - \sum_{k=1}^{\infty} \frac{2}{4k^2 - 1} \cos \frac{2k\pi x}{L} \right)
\]

Therefore,

\[
\sin \frac{\pi x}{L} = \frac{2}{\pi} \left(1 - 2 \sum_{k=1}^{\infty} \frac{1}{4k^2 - 1} \cos \frac{2k\pi x}{L} \right).
\]