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Problem 1.11

Use Gauss’s theorem to prove that at the surface of a curved charged conductor, the normal
derivative of the electric field is given by
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where R1 and R2 are the principal radii of curvature of the surface.

Solution

Gauss’s law gives the relationship between the electric field E and the charge density ρ.

∇ ·E =
ρ

ε0

Take the gradient of both sides.
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)
=
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Integrate both sides over the volume of an arbitrary three-dimensional conductor.˚
V
∇(∇ ·E) dV =

1

ε0

˚
V
∇ρ dV

Since ρ = 0 within the conductor, ∇ρ = 0 as well, which makes the right side zero.˚
V
∇(∇ ·E) dV = 0

Use Identity 18 on the left. ‹
S
(∇ ·E)n dS = 0

Because the boundary of this conductor is arbitrary, the surface integral may be removed.

∇ ·E = 0 on S

On the conductor’s surface, the electric field is entirely normal: E = En.

∇ · (En) = 0 on S

Use Identity 7.
n ·∇E + E(∇ · n) = 0 on S
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+ E(∇ · n) = 0 on S

Divide both sides by E.
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Write the divergence of the unit normal vector in terms of the principal radii of curvature.
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