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Problem 1.11

Use Gauss’s theorem to prove that at the surface of a curved charged conductor, the normal
derivative of the electric field is given by
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where R; and Ry are the principal radii of curvature of the surface.

Solution
Gauss’s law gives the relationship between the electric field E and the charge density p.
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Take the gradient of both sides.
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Integrate both sides over the volume of an arbitrary three-dimensional conductor.
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Since p = 0 within the conductor, Vp = 0 as well, which makes the right side zero.
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Because the boundary of this conductor is arbitrary, the surface integral may be removed.

Use Identity 18 on the left.
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On the conductor’s surface, the electric field is entirely normal: E = En.
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Use Identity 7.
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Divide both sides by FE.
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Write the divergence of the unit normal vector in terms of the principal radii of curvature.
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