Exercise 12

Let $\mathbf{v} = (2,3)$. Suppose $\mathbf{w} \in \mathbb{R}^2$ is perpendicular to \mathbf{v} , and that $\|\mathbf{w}\| = 5$. This determines \mathbf{w} up to sign. Find one such \mathbf{w} .

Solution

Since $\mathbf{v} = (2,3)$ and $\mathbf{w} = (w_x, w_y)$ are perpendicular, the dot product of these two vectors must be zero.

$$\mathbf{v} \cdot \mathbf{w} = 0$$

$$(2,3) \cdot (w_x, w_y) = 0$$

$$2w_x + 3w_y = 0$$
(1)

The magnitude of ${\bf w}$ is known:

$$\|\mathbf{w}\| = \sqrt{w_x^2 + w_y^2} = 5.$$
 (2)

Solve equations (1) and (2) for w_x and w_y .

$$w_x = \pm \frac{15}{\sqrt{13}}$$
 and $w_y = \mp \frac{10}{\sqrt{13}}$

Therefore, one such ${\bf w}$ is

$$\mathbf{w} = \left(\frac{15}{\sqrt{13}}, -\frac{10}{\sqrt{13}}\right).$$