Exercise 43

Two media with indices of refraction n_1 and n_2 are separated by a plane surface perpendicular to the unit vector \mathbf{N} . Let \mathbf{a} and \mathbf{b} be unit vectors along the incident and refracted rays, respectively, their directions being those of the light rays. Show that $n_1(\mathbf{N} \times \mathbf{a}) = n_2(\mathbf{N} \times \mathbf{b})$ by using Snell's law, $\sin \theta_1 / \sin \theta_2 = n_2 / n_1$, where θ_1 and θ_2 are the angles of incidence and refraction, respectively. (See Figure 1.3.11.)

figure 1.3.11 Snell's law.

Solution

Start with Snell's law.

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}$$

Multiply both sides by $n_1 \sin \theta_2$.

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Replace the argument of each sine function by π minus the argument.

$$n_1\sin(\pi-\theta_1) = n_2\sin(\pi-\theta_2)$$

The point is that these new arguments represent the angles between N and the unit vectors as shown below.

Since $\|\mathbf{N}\| = \|\mathbf{a}\| = \|\mathbf{b}\| = 1$, they can be placed on both sides.

$$n_1 \|\mathbf{N}\| \|\mathbf{a}\| \sin(\pi - \theta_1) = n_2 \|\mathbf{N}\| \|\mathbf{b}\| \sin(\pi - \theta_2)$$

Use the definition of the magnitude of the cross product.

$$n_1 \|\mathbf{N} \times \mathbf{a}\| = n_2 \|\mathbf{N} \times \mathbf{b}\|$$

Since the incident and refracted light rays both point downward, $\mathbf{N} \times \mathbf{a}$ and $\mathbf{N} \times \mathbf{b}$ will have the same direction. Therefore,

$$n_1(\mathbf{N} \times \mathbf{a}) = n_2(\mathbf{N} \times \mathbf{b}).$$