Exercise 50

Let P(x) = F(x)G(x) and Q(x) = F(x)/G(x), where F and G are the functions whose graphs are shown.

(a) Find
$$P'(2)$$
.

(b) Find
$$Q'(7)$$
.

Solution

Evaluate the derivative of P(x) using the product rule.

$$P'(x) = F'(x)G(x) + F(x)G'(x)$$

Evaluate the derivative of Q(x) using the quotient rule.

$$Q'(x) = \frac{F'(x)G(x) - G'(x)F(x)}{[G(x)]^2}$$

At x = 2, the slope of F is 0 and the slope of G is 1/2: F'(2) = 0 and G'(2) = 1/2. Use this information to evaluate P'(2).

$$P'(2) = F'(2)G(2) + F(2)G'(2) = (0)(2) + (3)\left(\frac{1}{2}\right) = \frac{3}{2}$$

At x = 7, the slope of F is 1/4 and the slope of G is -2/3: F'(7) = 1/4 and G'(7) = -2/3. Use this information to evaluate Q'(7).

$$Q'(7) = \frac{F'(7)G(7) - G'(7)F(7)}{[G(7)]^2} = \frac{\left(\frac{1}{4}\right)(1) - \left(-\frac{2}{3}\right)(5)}{1^2} = \frac{43}{12}$$