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Exercise 3

On the sides of a thin rod, heat exchange takes place (obeying Newton’s law of cooling—flux
proportional to temperature difference) with a medium of constant temperature T0. What is the
equation satisfied by the temperature u(x, t), neglecting its variation across the rod?

Solution

There are two ways (among others) to go about this problem. One is the integral formulation,
where we consider the heat flowing into and out of a finite portion of the rod. The other is the
differential formulation, where we consider the heat flowing into and out of an infinitesimal
element of the rod. In both cases we come to the same governing PDE, so use whichever you
prefer.

Two modes of heat transfer are at work in this problem: conduction (axially along the rod’s
interior) and convection (on the sides of the rod). To find the governing PDE for the temperature
we have to consider the law of conservation of energy, which says that energy can neither be
created nor destroyed. If there’s a certain amount of heat entering a portion of the rod and
there’s less heat coming out of it, then there must be heat accumulating within it.
Mathematically this is written as

dq

dt
= rate of heat in− rate of heat out, (1)

where q denotes the amount of heat and dq/dt represents how fast heat is accumulating. The heat
flux due to conduction φ is defined as the amount of heat flowing axially per unit time per unit
area. Therefore, if we multiply the heat flux by the area of the rod’s cross section, we get the rate
of heat that is flowing through it.

The Integral Formulation

Figure 1: Schematic of the thin rod (integral formulation). Do note that although the rod here
has a circular cross section, the following analysis is for a general cross section with area A and
perimeter P .

If we consider the portion of the rod between x = x0 and x = x1 as shown in Figure 1, heat is
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flowing into the portion at x = x0 and flowing out of it at x = x1, as indicated by the arrows.

Rate of heat flow in: φ(x0, t)A

Rate of heat flow out: φ(x1, t)A

These are the rates for conduction. Now we will find the rate of heat flow due to convection by
using Newton’s law of cooling, which says that heat flux due to convection ψ is proportional to
the temperature difference between the rod and the environment it’s in.

ψ ∝ T − T0,

where T is the temperature of the rod (a function of x and t) and T0 is the ambient temperature
(a constant). To change this to an equation we can use, we introduce a constant of
proportionality h, which is known as the convection heat transfer coefficient.

ψ = h(T − T0)

If the rod is hot compared to the environment (i.e. T > T0), heat will flow out of the rod.
Conversely, if the rod is cold (i.e. T < T0), heat will flow into it. As mentioned before, to get the
rate of heat flow we multiply the heat flux by the area. Note, however, that this area is not the
cross-sectional area A we used before for conduction, but rather it is the surface area that is
exposed to the environment. Because different parts of the bar are at different temperatures, we
have to multiply the heat flux by the perimeter of the cross section and a little bit of distance dx
to get a little bit of surface area. To get the total rate of heat flow we integrate over the portion
of the rod from x = x0 to x = x1.

Rate of heat flow out:

ˆ x1

x0

ψ(x, t)P dx =

ˆ x1

x0

hP (T − T0) dx

This is the rate for convection. Now we can substitute these results into the law of conservation of
energy (1).

dq

dt
= φ(x0, t)A− φ(x1, t)A−

ˆ x1

x0

hP (T − T0) dx

The relationship between the heat q and temperature T is dq = mcdT , where m is the mass of
the portion of the rod and c is the specific heat (a measure of how hard it is to change the
temperature) of the rod. Thus,

dq

dt
= mc

∂T

∂t
.

m is the product of mass density ρ (mass per unit volume) and Adx. Since ∂T/∂t is different at
different parts of the rod, we have to integrate from x = x0 to x = x1 to get the total dq/dt.
Plugging this in to the left side gives us

ˆ x1

x0

ρAc
∂T

∂t
dx = −[φ(x1, t)A− φ(x0, t)A]−

ˆ x1

x0

hP (T − T0) dx.

According to the fundamental theorem of calculus,

ˆ b

a
f(x) dx = F (b)− F (a),
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so we can write the part in square brackets as

φ(x1, t)A− φ(x0, t)A =

ˆ x1

x0

∂

∂x
[φ(x, t)A] dx.

The equation for the temperature becomesˆ x1

x0

ρAc
∂T

∂t
dx = −

ˆ x1

x0

∂

∂x
[φ(x, t)A] dx−

ˆ x1

x0

hP (T − T0) dx.

Combine the two integrals on the right into one.
ˆ x1

x0

ρAc
∂T

∂t
dx =

ˆ x1

x0

{
− ∂

∂x
[φ(x, t)A]− hP (T − T0)

}
dx

Hence, the integrands must be equal to each other.

ρAc
∂T

∂t
= − ∂

∂x
[φ(x, t)A]− hP (T − T0)

The final step is to express the heat flux due to conduction φ in terms of the temperature, and
this is done using Fourier’s law of conduction, which states that heat flux is proportional to the
temperature gradient.

φ ∝ ∂T

∂x

To make this into an equation, we introduce a constant of proportionality κ, which is known as
thermal conductivity.

φ = −κ∂T
∂x

We include the minus sign to indicate that heat travels down a temperature gradient, that is,
from hot to cold regions. Plugging this expression in for φ into the equation for temperature, it
becomes

ρAc
∂T

∂t
= − ∂

∂x

(
−κ∂T

∂x
A

)
− hP (T − T0)

Since κ and A are constant, we can pull them out of the derivative.

ρAc
∂T

∂t
= κA

∂

∂x

(
∂T

∂x

)
− hP (T − T0)

Divide both sides by ρAc.
∂T

∂t
=

κ

ρc

∂2T

∂x2
− hP

ρAc
(T − T0)

Therefore,
∂T

∂t
= k

∂2T

∂x2
− hP

ρAc
(T − T0),

where k = κ/ρc is another constant known as the thermal diffusivity. Since the problem
statement wants u(x, t) to represent the temperature, let u(x, t) = T (x, t).

∂u

∂t
= k

∂2u

∂x2
− hP

ρAc
(u− T0)

NOTE: In the answer at the back of the book, Mr. Strauss uses µ for h and calls it
“conductance,” but know that heat transfer texts generally use h and call it the convection heat
transfer coefficient.

www.stemjock.com



Strauss PDEs 2e: Section 1.3 - Exercise 3 Page 4 of 5

The Differential Formulation

Figure 2: Schematic of the thin rod (differential formulation). Do note that although the rod here
has a circular cross section, the following analysis is for a general cross section with area A and
perimeter P .

If we consider the portion of the rod between x and x+ ∆x as shown in Figure 1, heat is flowing
into the portion at x and flowing out of it at x+ ∆x, as indicated by the arrows.

Rate of heat flow in: φ(x, t)A

Rate of heat flow out: φ(x+ ∆x, t)A

These are the rates for conduction. Now we will find the rate of heat flow due to convection by
using Newton’s law of cooling, which says that heat flux due to convection ψ is proportional to
the temperature difference between the rod and the environment it’s in.

ψ ∝ T − T0,

where T is the temperature of the rod (a function of x and t) and T0 is the ambient temperature
(a constant). To change this to an equation we can use, we introduce a constant of
proportionality h, which is known as the convection heat transfer coefficient.

ψ = h(T − T0)

If the rod is hot compared to the environment (i.e. T > T0), heat will flow out of the rod.
Conversely, if the rod is cold (i.e. T < T0), heat will flow into it. As mentioned before, to get the
rate of heat flow we multiply the heat flux by the area. Note, however, that this area is not the
cross-sectional area A we used before for conduction, but rather it is the surface area that is
exposed to the environment, which is the perimeter P times distance ∆x.

Rate of heat flow out: ψ(x, t)P ∆x = hP (T − T0) ∆x

This is the rate for convection. Now we can substitute these results into the law of conservation of
energy (1).

dq

dt
= φ(x, t)A− φ(x+ ∆x, t)A− hP (T − T0) ∆x

The relationship between the heat q and temperature T is dq = mcdT , where m is the mass of
the portion of the rod and c is the specific heat (a measure of how hard it is to change the
temperature) of the rod. Thus,

dq

dt
= mc

∂T

∂t
.
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m is the product of mass density ρ (mass per unit volume) and A∆x. Plugging this in to the left
side gives us

ρAc
∂T

∂t
∆x = −[φ(x+ ∆x, t)A− φ(x, t)A]− hP (T − T0) ∆x.

Divide both sides by ∆x.

ρAc
∂T

∂t
= −φ(x+ ∆x, t)A− φ(x, t)A

∆x
− hP (T − T0)

Now let ∆x→ 0.

ρAc
∂T

∂t
= − lim

∆x→0

φ(x+ ∆x, t)A− φ(x, t)A

∆x
− hP (T − T0)

According to the definition of the derivative,

df

dx
= lim

h→0

f(x+ h)− f(x)

h
,

Hence, the equation for the temperature becomes

ρAc
∂T

∂t
= − ∂

∂x
[φ(x, t)A]− hP (T − T0).

The final step is to express the heat flux due to conduction φ in terms of the temperature, and
this is done using Fourier’s law of conduction, which states that heat flux is proportional to the
temperature gradient.

φ ∝ ∂T

∂x
To make this into an equation, we introduce a constant of proportionality κ, which is known as
thermal conductivity.

φ = −κ∂T
∂x

We include the minus sign to indicate that heat travels down a temperature gradient, that is,
from hot to cold regions. Plugging this expression in for φ into the equation for temperature, it
becomes

ρAc
∂T

∂t
= − ∂

∂x

(
−κ∂T

∂x
A

)
− hP (T − T0)

Since κ and A are constant, we can pull them out of the derivative.

ρAc
∂T

∂t
= κA

∂

∂x

(
∂T

∂x

)
− hP (T − T0)

Divide both sides by ρAc.
∂T

∂t
=

κ

ρc

∂2T

∂x2
− hP

ρAc
(T − T0)

Therefore,
∂T

∂t
= k

∂2T

∂x2
− hP

ρAc
(T − T0),

where k = κ/ρc is another constant known as the thermal diffusivity. Since the problem
statement wants u(x, t) to represent the temperature, let u(x, t) = T (x, t).

∂u

∂t
= k

∂2u

∂x2
− hP

ρAc
(u− T0)

NOTE: In the answer at the back of the book, Mr. Strauss uses µ for h and calls it
“conductance,” but know that heat transfer texts generally use h and call it the convection heat
transfer coefficient.
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