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Exercise 4

Solve the diffusion equation if φ(x) = e−x for x > 0 and φ(x) = 0 for x < 0.

Solution

Solution by the Similarity Method

We have to solve the initial value problem,

ut = kuxx, u(x, 0) = φ(x). (1)

In order to do so, we’ll solve for the Green’s function G(x, t) in the corresponding PDE,

Gt = kGxx, G(x, 0) = δ(x), (2)

where δ(x), the Dirac delta function, is defined as

δ(x) =

{
1 x = 0

0 x 6= 0
.

The reason we’re solving the equation with the delta function is that it has the extremely useful
“sifting” property, ˆ ∞

−∞
f(s)δ(x− s) ds = f(x),

so the solution to the initial value problem (1) in terms of the Green’s function is

u(x, t) =

ˆ ∞
−∞

G(x− s, t)φ(s) ds.

This can be verified by substituting this form for u into (1). Now we will go about solving (2) for
G(x, t) by using the similarity method (also known as the combination of variables method).
Because u is a dimensionless quantity (that is, it yields a pure number with no units) the variables
x, t, and k have to appear in the solution in a dimensionless combination. x has units of meters, t
has units of seconds, and k has units of meters2/second, so the combination of variables has to be

x2

kt

or any convenient multiple or power thereof. Therefore,

u = u(η), where we choose η =
x√
kt
.

We choose this particular form for η so the process of getting the final answer is smoother. We’re
trying to solve (2) for G, though, and G is not dimensionless; as can be seen from the initial
condition, it has the same dimensions as δ(x). δ(x) has the inverse dimension of its argument, so
G has dimensions of meters−1. Thus, G has to be of the form,

G(x, t) =
1√
kt
g

(
x√
kt

)
,
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where g is an arbitrary function. In order to determine g, we have to plug this form into (2) and
solve the resulting ODE. To start, write the expressions for Gt and Gxx.

∂G

∂t
= − 1

2
√
kt3

g +
1√
kt

(
− x

2
√
kt3

)
g′

∂G

∂x
=

1√
kt
· 1√

kt
g′ =

1

kt
g′

∂2G

∂x2
=

1

kt
· 1√

kt
g′′ =

1√
k3t3

g′′

Substituting these expressions into (2) gives

− 1

2
√
kt3

g − 1

2
√
kt3
· x√

kt
g′ =

1√
kt3

g′′.

Cancel common terms and move everything to one side.

g′′ +
1

2

x√
kt
g′ +

1

2
g = 0

Use the combination variable η.

g′′ +
η

2
g′ +

1

2
g = 0

The last two terms on the left side can be written as one using the product rule.

g′′ +
(η
2
g
)′

= 0

Integrate both sides of the equation.

g′ +
η

2
g = C1

This is an inhomogeneous first-order linear differential equation that can be solved with an
integrating factor. The integrating factor is

I = e
´ η

2
dη = e

η2

4 .

Multiply both sides by I.

e
η2

4 g′ +
η

2
e
η2

4 g = C1e
η2

4

The two terms on the left side can be written as one using the product rule.(
e
η2

4 g

)′
= C1e

η2

4

Integrate both sides of the equation a second time.

e
η2

4 g =

ˆ η

C1e
s2

4 ds+ C2

Hence, the arbitrary function g is

g(η) = e−
η2

4

[
C1

ˆ η

e
s2

4 ds+ C2

]
,
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and consequently, the Green’s function is

G =
1√
kt
g(η) =

e−
η2

4

√
kt

[
C1

ˆ η

e
s2

4 ds+ C2

]
. (3)

The next order of business is to determine the constants of integration, C1 and C2. We need to
return to the diffusion equation and the initial condition in (2) to figure these out.

Gt = kGxx

Integrate both sides of the equation with respect to x over the whole line.

ˆ ∞
−∞

Gt dx =

ˆ ∞
−∞

kGxx dx

Take out the time derivative from the left side and evaluate the right side.

d

dt

ˆ ∞
−∞

Gdx = kGx|∞−∞

We assume that G and Gx tend to 0 as x→ ±∞, so we have

d

dt

ˆ ∞
−∞

Gdx = 0.

This implies that the quantity, ˆ ∞
−∞

Gdx,

remains constant for all time. Initially G(x, 0) = δ(x), so

ˆ ∞
−∞

G(x, t) dx =

ˆ ∞
−∞

G(x, 0) dx =

ˆ ∞
−∞

δ(x) dx = 1. (4)

In order for this integral to converge, C1 has to be 0. In terms of x and t, (3) becomes

G(x, t) =
C2√
kt
e−

x2

4kt .

C2 can be thought of as a normalization constant that we determine by plugging into (4).

ˆ ∞
−∞

G(x, t) dx =

ˆ ∞
−∞

C2√
kt
e−

x2

4kt dx = 1

Make the following substitution to solve the integral.

v =
x√
4kt

dv =
dx√
4kt

→ 2 dv =
dx√
kt

The integral becomes

2C2

ˆ ∞
−∞

e−v
2
dv = 1,
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and it evaluates to
√
π.

2C2

√
π = 1

Solving for C2 yields

C2 =
1√
4π
.

Therefore, the Green’s function is

G(x, t) =
1√
4πkt

e−
x2

4kt ,

and the solution to the initial value problem in (1) is

u(x, t) =

ˆ ∞
−∞

1√
4πkt

e−
(x−s)2

4kt φ(s) ds. (5)

u(x, t) can be interpreted as the convolution of the initial condition with a Gaussian filter. At
every point x, u(x, t) is an averaged, or smoothed, version of the initial condition over an interval
of width

√
kt. As t increases, the range of the filter grows and u(x, t) becomes increasingly

smooth over x. Any discontinuities or kinks that are present in the initial condition are smoothed
out. In this exercise, the initial condition is

φ(x) =

{
e−x x > 0

0 x < 0
.

If we substitute this into the formula in (5), then we get

u(x, t) =

ˆ ∞
0

1√
4πkt

e−
(x−s)2

4kt e−s ds.

Combine the exponentials into one.

u(x, t) =

ˆ ∞
0

1√
4πkt

e−
(x−s)2

4kt
−s ds.

The exponent E becomes the following.

E = −(x− s)2

4kt
− s

=
−x2 + 2xs− s2 − 4kts

4kt

=
−x2 − s2 + (2x− 4kt)s− (x− 2kt)2 + (x− 2kt)2

4kt

=
−s2 + 2(x− 2kt)s− (x− 2kt)2 − x2 + (x− 2kt)2

4kt

=
−[s− (x− 2kt)]2 −��x

2 +��x
2 − 4ktx+ 4k2t2

4kt

=
4kt(kt− x)− (s− x+ 2kt)2

4kt

= kt− x− (s− x+ 2kt)2

4kt
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So we have for u(x, t):

u(x, t) =
1√
4πkt

ekt−x
ˆ ∞
0

e−
(s−x+2kt)2

4kt ds.

Make the following substitution to solve the integral.

p =
s− x+ 2kt√

4kt
→ p2 =

(s− x+ 2kt)2

4kt

dp =
ds√
4kt

The integral becomes

u(x, t) =
1√
π
ekt−x

ˆ ∞
−x+2kt√

4kt

e−p
2
dp.

Split up the integral into two to get desired limits of integration.

u(x, t) =
1√
π
ekt−x

(ˆ 0

−x+2kt√
4kt

e−p
2
dp+

ˆ ∞
0

e−p
2
dp

)

Switch the limits on the first integral and add a minus sign.

u(x, t) =
1√
π
ekt−x

(
−
ˆ −x+2kt√

4kt

0
e−p

2
dp+

ˆ ∞
0

e−p
2
dp

)

The error function, erf z, is defined as

erf z =
2√
π

ˆ z

0
e−p

2
dp,

so we can write the first integral in terms of it. Also, the second integral can be evaluated to√
π/2.

u(x, t) =
1√
π
ekt−x

[
−
√
π

2
erf

(
−x+ 2kt√

4kt

)
+

√
π

2

]
Therefore,

u(x, t) =
1

2
ekt−x

[
1− erf

(
−x+ 2kt√

4kt

)]
.
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Figure 1: Plot of the solution u(x, t) with k = 1 m2/s for six different times: t = 0 s (red), t = 0.1
s (orange), t = 0.3 s (yellow), t = 1 s (green), t = 3 s (blue), and t = 10 s (purple).
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