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Exercise 2

Find the solutions that depend only on r of the equation uxx + uyy + uzz = k2u, where k is a
positive constant. (Hint: Substitute u = v/r.)

Solution

This PDE is known as the Helmholtz equation.

∇2u = k2u

Since we’re looking for solutions that depend only on r in three dimensions, we choose to write
the Laplacian operator in spherical coordinates (θ here represents the angle from the polar axis).
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A spherically symmetric solution is one that only depends on r, u = u(r). With this assumption
the PDE simplifies to an ODE that can be solved relatively easily.
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Before making the substitution u = v/r in equation (1), find du/dr and d2u/dr2 in terms of the
new variable.
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Now make the substitution in equation (1). As a result, equation (1) becomes
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Expand the left side and cancel equal terms.
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Multiply both sides by r.
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= k2v

The general solution can be written in terms of exponential functions.

v(r) = Aekr +Be−kr

Therefore,

u(r) =
Aekr +Be−kr

r
.
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