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Exercise 12

Solve the three-dimensional wave equation in {r # 0, t > 0} with zero initial conditions and with
the limiting condition
lim 4772w, (1, t) = g(t).

r—0

Assume that ¢(0) = ¢'(0) = ¢”(0) = 0.

Solution
The initial boundary value problem we wish to solve is as follows.

uy = 2V, —oo <z,y,z <00, t>0
u($7y7210) =0 Ut(fC,y,Z,O) =0
lim 4772w, (r, t) = g(t)

r—0
u is assumed to be spherically symmetric based on the form of the boundary condition and zero
initial conditions. As a result, all angular derivatives in the Laplacian operator vanish when it’s
expanded in spherical coordinates (r, ¢, #), where € represents the angle from the polar axis.

ug =2 u +2u +iu +Cowu+ ! U
L S rz 0T 2ginZg %
=0 =0 =0

The problem has been reduced to the spherical wave equation on a semi-infinite interval.

2
utt:c2<umn+u,ﬂ)7 O<r<oo, t>0
T

u(r,0) =0 u(r,0) =0
lim 4772w, (r,t) = g(t)

r—0
As in Exercise 2.1.8, make the substitution v(r,t) = ru(r,t) in order to transform this PDE to the

wave equation. Find the derivatives of « in terms of this new variable.

Vg = T'ut
_ _ Uu
Uy = TUg > U = e

Vp = U+ TUp

Upr
Upp = Up + Up + TUpp = 2“7" + Ty — Upp + —Up = —
T T

v satisfies the one-dimensional wave equation.

(%77 Urrp
e _ ot
T T

2
Utt = C VUpp
The initial conditions for v are

v(r,0) = ru(r,0) =0
ve(r,0) = rug(r,0) = 0,
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and the boundary condition for v is

, 0 [v(r,t)
2— N =
}1_1)1(1)47rr or { r ] 9()
) o [roe(r,t) —v(r,t)]
e L

47 }%[rvr(r, t) —v(r,t)] = g(t)

Ar[—v(0,)] = g(t)
_9®)
4
To summarize, u will be determined by solving the much simpler initial boundary value problem
for v.

v(0,t) =

utt—c%wzo, O0<r<oo, t>0
v(r,0) =0 v(r,0) =0

g(t)

U(O, t) = —?

Comparing the wave equation to the general form of a second-order PDE,
Auy + Buyy + Cupr + Dug + Eu, + Fu = G,

we see that A=1, B=0,C=—c?, D=0, E=0, F =0, and G = 0. The characteristic
equations for a second-order PDE are given by

% - LB+ B?—140)
(£V4c?)

C.

H 2ol — o

Because the discriminant B2 — 4AC = 4¢? is positive, the two families of characteristic curves are
real and distinct. In particular, they are lines with slopes ¢ and characteristic coordinates, £ and
7, respectively.

dr _ — =ct+¢
dt_c Tr==¢C

dr — t +
— = —cC r=—cC

dt ”

Suppose we are interested in evaluating v at the point (rg,ty). The equations of the lines going
through this point are

r—ro=c(t —tg)
r—ro=—c(t—tp).
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As shown in the figure below, if (rg, o) lies in the domain r + ¢t > 0, then the solution behaves as
if there were no boundary. On the other hand, if (rg, ) lies in the domain r — ¢t < 0, then a
reflection occurs at the boundary. The solution has to be considered in each case.

A
r—cit<0 -

0 2

Figure 1: The presence of a boundary at r = 0 means we have to consider the solution to the PDE
in the domains above and below the line r — ¢t = 0. The reason is that a reflection occurs for points
above it but not below it.

Case 1: r—ct >0

A

o, [ g —
r—ro =c(t—1p) (ro, 7o) r—ro==—c(t=1p)
/ -
ro — ¢l ro +ci

No reflection occurs in this case. Integrate both sides of the PDE over the triangular domain D;
enclosed by the lines (from left to right as indicated above).

//(Utt — Pup)dA=0
Dy
- | - G| aa=o
Dy

Rewrite the left side.
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Multiply both sides by —1.
0,9 0 _
// [67“(6 vp) — &f(vt)] dA =0
Dy

Apply Green’s theorem (essentially the divergence theorem in two dimensions) to the double
integral to turn it into a counterclockwise line integral around the triangle’s boundary bdy D;.

(v¢ dz + v, dt) =0

bdy D1

Let Ly, Lo, and L3 represent the legs of the triangle.
‘A

(r0, to)

vy

i
ro—cty ro +city

The line integral is the sum of three integrals, one over each leg.

/ (vedr + A, dt) + / (v dr + A, dt) + / (v dr + A, dt) =0
L1 L2

Ls
OIl L1 On Lz OIl L3
t=0 r—ro=—c(t—tp) r—ro=c(t —tg)
dt =0 dr = —cdt dr = cdt

Replace the differentials in the integrals over Lo and Ls.

ro-+cto
/ ve(r, 0) dr + / [vt(—c dt) + v, <_dr>] + / [vt(cdt) + v, (dr)] =0
ro—cto Lo c Ls c

In this exercise v(r,0) = 0, so the integral over L; vanishes.

ov ov ov ov

The remaining integrands are how the differential of v = v(r,t) is defined.

—c/ dv—i—c/ dv=20
Lo Ls

—clv(rg,to) — v(ro + cto,0)] + c[v(ro — cto,0) — v(ro, t9)] = 0

Evaluate the remaining integrals.
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In this exercise v(r,0) = 0, so v(rg + ctp,0) = 0 and v(r¢ — ctp,0) = 0.
—2cv(ro,tg) =0

Divide both sides by —2c.
U(T’Q, to) =0

Switch the roles of r» and ¢t with those of ry and ¢y, respectively.
v(r,t) =0, r—ct>0
Therefore, since u(r,t) = v(r,t)/r,
u(r,t) =0, r—ct>0.

Case 2: r—ct <0

r—rg =clft—1
0= Q r—ro=—c(t—1p)

0 \
(o0=2)
N N
(ctg —rp, 0) (rg +ctp, 0)

r—0= —c[f—(to - ?—0)] = —rg —c(t —1fp)
c

Integrate both sides of the PDE over the polygonal domain D5 enclosed by the lines (from left to
right as indicated above).

//(Utt - csz) dA =0

Do

Rewrite the left side.

Multiply both sides by —1.
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Apply Green’s theorem to the double integral to turn it into a counterclockwise line integral
around the polygon’s boundary bdy Ds.

(ve dr + P dt) = 0
bdy D2
Let L4, L5, Lg, and L7 represent the legs of the polygon.

t

(o, fo)
fon-2)
3 tO -
c Ly Ls
Ly 7

(cty—rp, 0) (rg+ctp, 0)
The line integral is the sum of four integrals, one over each leg.

(ve dr + v, dt) + / (ve dr + v, dt) =0
L7

/ (vy dr + v, dt) + / (v¢ dr + v, dt) + /
Ly Ls

Lg

On Ly On Ls On Lg On L7
t=0 r—ro=—c(t —to) r—ro=c(t —1to) r=—rg—c(t —tp)
dt =0 dr = —cdt dr = cdt dr = —cdt

Replace the differentials in the integrals over Ls, Lg, and L.

ro+cto d d
/ ve(r,0) dr+/ |:Ut(—Cdt) + Pu, <_r>] +/ [vt(cdt) + o, <r>]
cto—ro Ls c Lg c
d
+/ [vt(—cdt) + vy (—T>] =0
Ly c
In this exercise v¢(r,0) = 0, so the integral over L vanishes.
ov ov ov ov ov ov
- —dt+ —d —dt+ —dr | — —dt+ —dr| =0
C/L5<8t *or T>+c/,;6<8t o ’"> C/L7<8t o T)
The remaining integrands on the left side are how the differential of v = v(r,t) is defined.
—c | dv+c| dv—c | dv=0

Ls Lg L~

Evaluate the remaining integrals.

—clv(ro, to) — v(ro + cto,0)] + ¢ [v (O’to - LCO) B U(TO’tO)] — ¢ [U(Cto —70,0) —v (O’to B %)] =0
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In this exercise v(r,0) = 0 and v(0,t) = —g(t)/4m, so v(ro + cto,0) = 0 and v(cty — rp,0) = 0 and
v(0,t0 —ro/c) = —g(to — ro/c)/Am.

1 To
scatrnto) 42 |~ 10~ )] =0
cv(ro, to) + c[ -9t = ]

Solve this equation for v(r, o).

1 T
v(ro,to) = 19 (to - ?())

Switch the roles of r» and ¢t with those of ry and ¢, respectively.
1
v(r,t) :——g<t—i>, r—ct <0
c

u(r,t) = ———g (t—i>, r—ct<0.
c

In conclusion, the solution to the initial boundary value problem is

! (t=%) ifr—a<o
_—— —_ - 1 —_—
u(r,t) = amr? c e .

0 ifr—ct>0
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