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Problem 1.10

If the origin of the square wave of Prob. 1.9 is shifted to the right by 7/2, determine the Fourier
series.

Solution

The difference between this problem and the previous one is that the function f is now even.

FIGURE P1.10,

Notice that the wave repeats itself every 2w radians. The general Fourier series for a 2m-periodic
function is

oo o
f(0) = A0+2Ancosn0+Zaninn9. (1)
n=1 n=1
In order to take advantage of the properties of even and odd functions, we aim to find the Fourier
series by integrating over the symmetric interval (—m, 7). Integrate both sides of equation (1)
with respect to 6 from —m to 7 to solve for Ay.
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The fact that Ag = 0 could have been predicted from the fact that the average of the wave is zero.
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Ay, will now be determined. Multiply both sides of equation (1) by cos m#, where m is an integer,

f(0) cosmb = Ag cosmb + Z A,, cosnf cosmb + Z B,, sinn# cosmé

n=1 n=1

and then integrate both sides with respect to 6 from —7 to .
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Because the trigonometric functions are orthogonal, only one term in the first infinite series
remains as a result of the integration. All other terms vanish.

! f(0)cosnbdf = A, (m)

—Tr

Consequently,
1 ™
Ay, = / f(0) cosnb db
™ —T
1 w/2 w/2 ™
== / (1)cosn0d9+/ (—1) cosnb db +/ (1) cosnd db
Q -7 —7/2 w/2
1 Sm o 2 sin 5 sin ¢
T n n n
4  nrT
= ——sgin —.
nm 2

www.stemjock.com



Thomson & Dahleh Vibrations 5e: Chapter 1 - Problem 1.10 Page 3 of 4

B,, will now be determined. Multiply both sides of equation (1) by sinm#, where m is an integer,

f(0)sinmb = Agsinmb + Z A, cosnfsinmb + Z B,, sin nf sin m#

n=1 n=1

and then integrate both sides with respect to 6 from —= to .
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Because the trigonometric functions are orthogonal, only one term in the second infinite series
remains as a result of the integration. All other terms vanish.

i f(0)sinnfdb = B, ()

Consequently,
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=0.

The fact that B, = 0 could have been predicted from the fact that the wave is an even function.
With the coefficients determined, equation (1) becomes

—4 nm

0) = — sin — cosné.

£(9) Z — sin —-cosn
n=1

If n is even, the coefficient vanishes, so the series can be simplified (that is, made to converge

faster) by summing over the odd integers only. Let n = 2k — 1 in the sum.

> -4 (2k—-Dm =
= [(2k —1)6 —(-1 2k -1
f(9) E k= 1)n sin 5 cos[(2k E k= )¥] cos[(2k — 1)6]
2k—1=1 k:1
Therefore, replacing 6 with wit,
4N (—1)k
= E Q(k cos[(2k — 1)wt].

k=1
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e

Figure 1: This figure shows a plot of f(¢) versus ¢ using only the first 30 terms in the infinite series.
The more terms that are used in the series, the more it looks like the function in Figure P1.10.
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